共查询到20条相似文献,搜索用时 15 毫秒
1.
域上对称矩阵空间上的保逆线性映射 总被引:2,自引:1,他引:1
设F是特征不为2或3的域,n和m是正整数,且n≤m.设Sn(F)为F上n阶对称矩阵空间,Mm(F)为F上m阶全矩阵空间,GLn(F)为F上n阶一般线性群.设f是从Sn(F)到Mm(F)上的线性映射,若f满足f(X)-1=f(X-1),X∈Sn(F)∩GLn(F),则称f为保逆线性映射,并将保逆线性映射的集合记为N-1(Sn(F),Mm(F)).分别刻画了从Sn(F)到Mm(F)和Sn(F)到Sm(F)上的线性映射. 相似文献
2.
设F是特征不为2且元素个数大于3的域,n和m是正整数,令Sn(F)和Mn(F)分别是F上n×n对称矩阵空间和全矩阵空间,GLm(F)为F上m阶一般线性群,设f是从Sn(F)到Mm(F)上的线性映射,若f满足f(X)-1=f(X-1),X∈Sn(F)∩GLn(C),称f为保逆线性映射.刻画了从Sn(F)到Mm(F)以及从Sn(F)到Sm(F)上保逆线性映射. 相似文献
3.
域上保上三角矩阵逆的线性映射 总被引:1,自引:0,他引:1
设F是一个元素个数大于3的域,n 2是一个正整数,令Mn(F)和Tn(F)分别是F上n×n全矩阵空间和上三角矩阵空间,首先刻画从Tn(F)到Mn(F)的保矩阵逆的所有线性单射,由此Tn(F)到自身的所有保矩阵逆的线性双射被刻画. 相似文献
4.
设F是一个元素个数大于4的域,n≥2是一个正整数.令Mn(F)和Tn(F)分别是F上n×n全矩阵空间和上三角矩阵空间.首先刻画从Tn(F)到Mn(F)的保矩阵群逆的所有线性单射,由此Tn(F)到自身的所有保矩阵群逆的线性双射被刻画. 相似文献
5.
6.
7.
域上从对称矩阵空间到全矩阵空间保幂等的线性算子 总被引:5,自引:4,他引:5
刻画了特征不为2,3,5的域F上从对称矩阵空间Sn(F)到全矩阵空间Mm(F)的保幂等的线性算子(n≤m)。类似地,立方幂等保持,群逆保持,{1}逆保持,{1,2)逆保持等也被刻画。 相似文献
8.
关于特征2的域上保对称矩阵群逆的线性保持 总被引:1,自引:0,他引:1
设F是一个特征2的域且n≥2是一个正整数.令Mn(F)和Sn(F)分别是n×n的全矩阵空间 和对称矩阵空间.我们首先刻划从Mn(F)到Sn(F)的保矩阵群逆的所有线性单射,由此从Sn(F)到 自身的所有保矩阵群逆的线性双射被刻划. 相似文献
9.
以Tn(F)表示F上所有n×n上三角矩阵所组成的空间.刻画了Tn(F)上保持秩可加的线性映射. 相似文献
10.
设F是一个特征2的域,n≥2,Mn(F)和Sn(F)分别为F上的n×n全矩阵空间与对称矩阵空间.刻画了Sn(F)到Mn(F)上的保矩阵M-P逆的线性单射,由此又得到了Sn(F)到自身的保矩阵M-P逆的可逆的线性算子的形式,最后还刻画了Mn(F)到自身的保M-P逆的线性算子. 相似文献
11.
12.
设F是特征不为2的任意域,Mn(F)表示F上所有n×n矩阵所组成的空间.对任意A∈Mn(F),若存在λ∈F和幂等阵M∈Mn(F)使得A=λI+M,则称A为I-幂等矩阵.设φ:Mn(F)→Mn(F)为线性映射,若当A为I-幂等矩阵时,φ(A)也为I-幂等矩阵,则称φ保持I-幂等矩阵.刻画Mn(F)上保持I-幂等矩阵的线性... 相似文献
13.
设R是一个含有单位元1的交换整环,M(R)是R上的n×n矩阵模,用Pn(R)记Mn(R)中所有幂等阵构成的集合.若线性映射f:(R)→Mm(R)满足f(P相似文献
14.
15.
设F是一个特征不为2及3的域,Mn(F)表示F上n×n 矩阵全体,CLn(F)记F上一般线性群,N-1(F)表示从Mn(F)到Mm(F)的保矩阵逆的全部加法映射的集合.以矩阵逆作为不变量,研究不同矩阵空间上加法保持映射的形式,并采用直接刻画基底的矩阵逆保持算子形式的办法,刻画了N-1 (F)中元素的形式.从结果可看出当,n=2时的映射形式要比n≥3时的映射形式复杂得多. 相似文献
16.
设F表示域,n是大于等于4的整数.Kn(F)是由域上的所有n阶交错矩阵构成的集合.设fij(i,j=1.2,…,n)是F到F上的映射,f是Kn(F)到Kn(F)的映射并且映射的形式被定义为f:[aij]|→[fij(aij)],(V)[aij]∈Kn(F)则f称为fij(i,j=1,2,…,n)诱导的映射(即导出映射)... 相似文献
17.
域上迹零矩阵空间上的线性秩1保持(英文) 总被引:1,自引:1,他引:0
设F是域,m≥2是正整数,Mn(F)表示域F上所有n×n矩阵构成的线性空间,sln(F)表示Mn(F)的包含所有迹零矩阵的子空间.若线性映射φ:slm(F)→slm(F) 满足φ(sl1m(F))(-C)sl1m(F),则称其为线性秩1保持,其中sl1m(F)定义slm(F)的包含所有秩1矩阵的子集.通过使用数学归纳法证明了:φ:slm(F)→slm(F)是可逆的线性秩l保持的充要条件是存在c ∈F* 和可逆的M ∈Mm(F)使得φ(X)=cMXM-1,(A)X∈slm(F)或φ(X)=cMXT M-1,(A)X ∈slm(F). 相似文献
18.
19.
本文对文「1」中所引入的Moore-Penrose广义逆σ^+进行研讨,给出拓扑线性空间上Moore-Penrose广义的判别条件。 相似文献
20.
设Sm是复数域?上m×m对称矩阵全体.线性映射φ:Sm(×)Sn→Smn保持矩阵张量积秩,即rankφ(A(×)B)=rank(A(×)B),?A∈Sm,B∈Sn当且仅当存在可逆阵P∈Mmn使得φ(X)=PXPt,?X∈Sm(×)Sn.本文是对矩阵张量积空间上的线性保持问题的补充和发展. 相似文献