首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
为了优化舰船综合电力推进系统的性能,减少研制风险,基于M atlab-S im u link环境,建立了由十二相同步电机、电压型逆变器、螺旋桨及船舶负载组成的推进系统的各部分及系统的仿真模型。通过变压变频控制的十二相同步电动机带螺旋桨及船舶负载系统的仿真对模型进行了验证。为了提高舰船综合电力推进系统的性能,推导了十二相同步电动机直轴气隙磁链观测器的模型,籍此构建了十二相同步电动机矢量控制方案。仿真结果表明,各模型建立正确,十二相同步电动机矢量控制方案能够实现转矩与磁链控制解耦,能够满足舰船电力推进系统动态性能要求。  相似文献   

2.
介绍了小型船舶综合电力推进实验平台的机械和电气设计方案及相应的系统控制模型.平台主要由推进、模拟负载和测量三个子系统组成.推进系统主要由变频驱动装置、操作监控台、推进电机构成;模拟负载系统由交流电动机、四象限变频驱动装置、监控系统及负载模型软件组成;测量系统由转速传感器、转矩传感器以及PLC组成.  相似文献   

3.
分析了电力推进负载模拟系统的原理,采用MATLAB实时仿真工具RTW和多功能数据采集卡PCI-1711实现负载模型到模拟变流器的控制.基于MATLAB/Simulink对模拟系统的时延影响进行了仿真,分析了负载模型时延对模拟电机转矩控制的准确性和稳定性的影响.通过建立模拟电机转矩控制的闭环传递函数和频域的Bode图,进一步分析了时延影响,采用修正闭环增益的方法对时延进行了补偿,达到与理想时延下近似的控制效果,并得以仿真验证.  相似文献   

4.
分析了电力推进负载模拟系统的原理,采用MATLAB实时仿真工具RTW和多功能数据采集卡PCI-1711实现负载模型到模拟变流器的控制.基于MATLAB/Simulink对模拟系统的时延影响进行了仿真,分析了负载模型时延对模拟电机转矩控制的准确性和稳定性的影响.通过建立模拟电机转矩控制的闭环传递函数和频域的Bode图,进一步分析了时延影响,采用修正闭环增益的方法对时延进行了补偿,达到与理想时延下近似的控制效果,并得以仿真验证.  相似文献   

5.
针对小型电力推进船舶推进控制系统简单、对复杂环境适应性差的问题,在借鉴传统内燃机动力推进船舶主机控制策略基础上,根据小型电力推进船舶的特点和推进控制功能要求,提出了更加完善的控制系统方案,并建立了系统仿真模型.仿真结果表明,所提出的控制系统方案是可行的,提高了电力推进船舶的稳定性及安全性,使小型电力推进船舶更能够适应海上多变的环境.  相似文献   

6.
为了研究车辆动态负载高度时变性和随机性对电动汽车用开关磁阻电机驱动系统影响特性并实现电机驱动系统性能评价分析,基于车辆行驶工况动态负载特性,在开关磁阻电机非线性数学模型及车辆动力学模型基础上,分别建立了电动汽车用开关磁阻电机驱动系统及电动汽车动态载荷仿真模型.并根据电动汽车行驶过程中2个典型工况对建立模型进行了实时仿真,得到了开关磁阻电机主要性能参数随车辆动态载荷变化的响应曲线.分析并评价了开关磁阻电机驱动系统在各工况下的动态驱动特性,仿真结果对电动汽车车型设计及改进具有很好的参考价值.  相似文献   

7.
分析实际船舶电力系统,将同步电机理想化,忽略定子暂态,考虑转子阻尼绕组作用,建立简化的五阶同步发电机数学模型.应用计算机仿真技术,并结合实际,实现船舶同步发电机电力系统的仿真.分别对同步发电机、负载、励磁建模,在Matlab开发环境下,借助Simulink工具,选择合适的参数,对船舶同步发电机系统进行仿真.对发电机系统突加负载和突卸负载的仿真表明,该模型是准确有效的.  相似文献   

8.
小型船舶电力推进系统谐波分布研究   总被引:1,自引:0,他引:1  
针对小型船舶电力推进系统产生的谐波对船舶电网电能质量的影响,建立了谐波分析模型,研究变频驱动产生的输入侧电流谐波在不同工作状态下谐波分布情况,并分析了电力推进系统的动、静态特性对系统产生谐波分布的影响、研究结果表明:谐波电流的大小主要由负载的大小决定,在特殊工况下,系统频率的变化及系统阻抗的变化对谐波分布产生较大影响.  相似文献   

9.
在船舶综合液压推进系统的理论研究层面上,提出主机的恒功率控制.为证明此观点,建立了系统动态数学模型,并基于AMEsim对该系统的主机恒功率控制过程进行仿真分析.结果表明:在船舶综合液压推进系统主机定速运行过程中,当船舶负载发生变化时,通过控制系统对主泵排量的调节,主机的实际功率基本保持设定功率值.因此,船舶综合液压推进系统主机的恒功率控制是合理的.  相似文献   

10.
新型船舶综合全电力推进模拟实验系统研究   总被引:1,自引:0,他引:1  
在简要分析全电力推进船舶发展的基础上,构建了一种新颖的船舶综合全电力推进实验模拟系统.通过比较"变频器-异步电机"系统的两种高性能控制方法VC(矢量控制方法)和DTC(直接转矩控制方法)的优缺点,分别对推进单元中的推进电机和螺旋桨模拟电机采用不同的控制策略,取得了试验数据和波形,实验验证了该模拟系统的可行性.  相似文献   

11.
为实现船舶电力推进系统功耗的最优控制,提高船舶运行的经济性,建立了基于正则化的电力负荷混沌局域预测模型.运用相空间重构理论对船舶电力推进系统电力负荷进行单变量时间序列相空间重构,计算吸引子的Lyapunov指数,验证船舶电力推进系统电力负荷具有混沌特性,进而构建更为精准的由船舶电力负荷及其影响因素构成的多变量时间序列相空间.实验结果表明,该预测模型是有效的,且具有较高的预测精度.  相似文献   

12.
针对装有分体式双转子电机的混合动力汽车传动系统的结构,考虑主、副电机的机械耦合关系,建立了分体式双转子电机的数学模型.利用直接转矩控制方法对分体式双转子电机的主、副电机分别进行转速差和转矩差控制.通过Matlab/Simulink建立仿真模型并进行仿真.仿真结果表明,主、副电机能够根据内燃机和负载的转矩变化进行转矩合成控制,同时主电机的内转子转速能跟踪发动机转速,副电机转速能跟踪负载转速,实际车速能跟踪目标车速.  相似文献   

13.
电磁干扰是当前电动汽车电机驱动系统设计所面临的一大挑战. 为了在系统设计初期验证电磁干扰抑制技术的有效性和可行性,文中提出了一种基于端口阻抗测量的电机驱动系统SPICE等效电路建模方法. 根据系统部件的物理结构,建立了高压屏蔽线缆模型、电机控制器模型和驱动电机模型,通过实验验证模型的精度. 将部件模型组合在一起,构建了完整的电机驱动系统传导电磁干扰预测模型. 依据GB/T 18655-2016《车辆、船和内燃机无线电骚扰特性用于保护车载接收机的限值和测量方法》和GB/T 36282-2018《电动汽车用驱动电机系统电磁兼容性要求和试验方法》进行了系统带载传导电磁干扰仿真和实验,验证模型的准确性.   相似文献   

14.
为了在工况变换控制过程中,实现基于电动机系统最佳效率的优化控制,构建了电动机系统效率与转速及转矩之间的关系式.由实车测得的数据,确定了研究工况的范围,在电动机加载试验台上对电动机系统效率特性进行了测试,结果显示被测驱动电动机系统效率η>80%的区域面积占整个测试区域范围的77.1%.基于最小二乘法,对电动机系统效率进行曲面拟合,综合考虑拟合结果的精度及运算工作量,确定采用4次函数构建电动机系统效率模型;利用驱动电动机外特性部分工况点测试结果对模型进行了验证.结果表明:模型计算值与实测值的最大相对误差为3.9%,建立的模型是有效的,该模型能够为在整车控制器中制定基于电动机系统最佳效率的优化控制策略提供依据.  相似文献   

15.
针对太阳能游船电力推进系统的拓扑结构,研究基于双能量源不同工作状态下的能量管理控制策略,并进行Simulink仿真.仿真结果验证了该控制策略能有效地分配双能量源之间的功率,实现太阳能利用的最大化,从而提升游船的续航能力  相似文献   

16.
针对风电叶片电驱动双惯性激振疲劳加载时出现耦合问题,通过对加载系统进行合理简化,基于拉格朗日方法建立疲劳加载过程中的动力学数学模型,并由此构建系统的机电耦合方程.利用小参数周期平均法对耦合过程近似解析,并推导了系统振动同步稳定的条件,得出系统运行过程中电动机负载转矩的影响因素,揭示系统出现耦合现象的机理,对系统频率特性进行数值仿真,得到不同加载频率下叶片振动特性.通过实际叶片疲劳试验验证数学模型、理论推导及仿真结果的正确性,为风电叶片疲劳加载系统同步控制策略制定提供理论依据及工程应用参考.  相似文献   

17.
目前,全球有200多项在研电推进飞机项目,包含传统固定翼飞机改造、新构型设计、全电推进系统和混合电推进等。近年来,电推进飞机的发展方向可分为纯电动固定翼、电动垂直起降和混合电推进3类。本文针对某小型无人机燃料电池和锂电池组成的混合动力系统,建立了由质子交换膜燃料电池混合动力系统、6自由度飞行器模型和基于神经网络控制器组成的整个系统仿真模型。为了满足无人机不同飞行阶段的电力需求,控制器控制电池电流和充放电速率。在燃料电池作为无人机主要动力源的情况下,对混合动力系统的性能进行验证和评估。对人工神经网络控制器和模糊逻辑控制器性能进行了比较,结果表明,人工神经网络控制器的性能明显提高,增强了无人机混合动力系统的整体稳定性。人工神经网络控制器在效率和油耗方面比模糊逻辑控制器略有提高,约为1%。这说明在这类系统中,所设计的神经网络控制器比经典控制器具有更强的鲁棒性,更好的响应能力、可靠性,可满足无人机燃料电池混合动力系统运行在最优水平和最优效率上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号