首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
热带巨型叶植物芭蕉叶片内结构异质性   总被引:1,自引:0,他引:1  
李帅  曹坤芳 《科学通报》2014,59(6):522-528
叶片是植物进行光合作用的主要场所,叶片面积是决定叶片光合作用的重要因子之一.以往对于叶片的解剖结构和生理功能的研究中,常常忽略同一叶片不同部位的结构及功能的差异,尤其是对于某些巨大叶片的结构和功能的异质性更是缺乏了解.为什么具有巨大叶片的植物在自然界十分稀少仍然是科学之谜.本研究选取了具有典型巨型叶片的单子叶植物芭蕉(Musa balbisiana Colla)作为实验材料,测定了叶片不同部位的结构和解剖特征.结果发现,沿主脉方向从叶片基部到叶片尖端,主脉导管直径、叶片厚度、保卫细胞长度呈剧烈下降趋势,比叶重在上部约1/2处呈下降趋势,而栅栏组织和海绵组织的比(P/S值)和气孔密度呈增长趋势,叶绿素含量、叶脉密度和气孔面积指数则无明显变化.沿平行脉从叶片中部到叶片两侧边缘,叶片厚度和比叶重呈现剧烈下降趋势,叶绿素含量、气孔密度和气孔面积指数在边缘约1/3范围内剧烈下降,栅栏组织和海绵组织的比和叶脉密度则呈现上升的趋势.从叶基到叶顶端主脉的导管直径急剧减少可能会影响叶片顶端的水分供应,而叶片两侧边缘气孔面积指数的明显减小、再加上大叶片水汽界面层厚会使边缘部位蒸腾散热功能受到抑制,从而抑制该部位的生理功能,这些因素可能导致芭蕉叶片面积不能继续增大.与叶片小一些的海芋大型叶相比,芭蕉叶内结构的异质性更加强烈.  相似文献   

2.
植物叶片的衰老是叶片生长发育的最后阶段.叶片衰老受发育年龄控制,但同时也受内源信号和外部生长环境调节.叶片衰老过程是一个复杂的细胞解体和死亡现象,  相似文献   

3.
植物叶片最大羧化速率对多因子响应的模拟   总被引:1,自引:0,他引:1  
张彦敏  周广胜 《科学通报》2012,(13):1112-1118,1183,1186
植物叶片最大羧化速率是表征植物光合能力的重要参数,建立植物叶片最大羧化速率的模拟模型将有助于准确预测植物的光合作用和陆地生态系统生产力.植物叶片最大羧化速率与环境因子之间存在诸多相关性,分析植物叶片最大羧化速率与环境因子的相关关系是建立植物叶片最大羧化速率模拟模型的有效途径.对来自104篇文献的植物叶片最大羧化速率数据及其对应的环境因子进行整理和分析发现,植物叶片最大羧化速率受温度、土壤含水量、CO2浓度以及土壤含氮量的显著影响.其中,温度、土壤含水量和CO2浓度均与植物叶片最大羧化速率呈单峰型曲线关系,土壤含氮量与植物叶片最大羧化速率呈显著的线性关系.据此,建立了温度、土壤含水量、CO2浓度以及土壤含氮量综合影响的植物叶片最大羧化速率模型.验证表明,该模型能较好地模拟不同环境条件下植物叶片的最大羧化速率,为陆地生态系统模型准确模拟植物光合作用提供了参数依据.  相似文献   

4.
谭凯炎  周广胜  任三学 《科学通报》2013,(12):1158-1163
植物暗呼吸的准确评估直接影响到植物碳收支估算.为弄清气候变化对冬小麦叶片暗呼吸的影响,采用开顶式气室模拟研究了冬小麦叶片暗呼吸对不同CO2浓度和温度的响应.结果表明,冬小麦叶片暗呼吸速率随CO2浓度升高呈线性下降趋势,560μmolmol1CO2浓度下冬小麦叶片暗呼吸速率较390μmolmol1CO2浓度下平均降低11%.冬小麦叶片暗呼吸速率与温度呈指数关系,暗呼吸温度系数Q10接近于2.冬小麦叶片暗呼吸对温度和CO2浓度的响应是独立的,据此建立了冬小麦叶片暗呼吸对CO2浓度和温度协同作用的响应关系.研究成果可为估算未来气候变化对冬小麦暗呼吸速率的影响,采取科学的碳对策提供依据.  相似文献   

5.
SO_2诱导的毛白杨叶片LCL发射光谱变化   总被引:1,自引:0,他引:1  
马玉琴 《科学通报》1994,39(6):538-538
二氧化硫是大气主要污染物.植物对SO_2反应十分敏感,通常人和动物还不致引起伤害的污染剂量,却可使一些植物受到伤害.叶片是植物进行气体交换的器官,庞大的叶表面与空气接触使SO_2得以随着空气一起通过气孔进入叶内.所以,SO_2的伤害首先表现在叶片上.余叔文等人的研究指出:“当急性伤害症状出现时,阔叶植物叶片脉间有不规则形坏死斑,斑点大小不一或呈块状”,“受SO_2伤害的叶片有的能发特殊的荧光”,并认为这是一种可以利用的特性.因此,利用植物叶片发光表征SO_2污染日益受到人们的重视.直接利用叶片  相似文献   

6.
叶片衰老是受细胞内部遗传程序控制的、植物叶片发育过程的最后一个阶段, 对启动和调控这一过程的分子机制及衰老信号的传递途径的研究具有重要意义. 从人工诱导衰老的大豆叶片中克隆到一个新的LRR型类受体蛋白激酶基因rlpk2 (GenBank登录号: AY687391), 无论在前期人工诱导衰老系统还是叶片自然发育过程中, 该基因在大豆叶片中的表达水平都表现出明显的衰老上调趋势. 利用RNA干扰技术(RNA interference, RNAi)“敲减”(knock-down)该基因的表达, 可以明显延缓转基因大豆叶片无论自然发育还是营养缺乏胁迫引起的衰老进程, 转基因植株叶片具有比较致密的表面结构及较高的叶绿素含量.  相似文献   

7.
叶片是作物进行光合作用的重要器官,其发育包括叶色和叶形两部分,研究水稻叶片的发育机理对于提高水稻产量和品质具有重要的意义.本研究利用EMS诱变水稻籼型恢复系缙恢10号,获得了一个窄叶白化突变体nul1(narrow and upper-albino leaf1).田间种植情况下,nul1叶片全生育期均变窄,且叶片正面白化、背面绿色正常,叶绿素含量显著下降.nul1叶片变窄主要是次叶脉数减少造成的.与野生型相比,nul1生育期延迟约8天左右,有效穗、结实率和千粒重等农艺性状显著或极显著下降.遗传分析表明,窄叶和叶片正面白化性状共分离,受同一隐性核基因控制,利用分子标记最终将调控基因Nul1定位在第7染色体长臂Indel标记Ind07-1与SSR标记RM21637之间,物理距离仅75kb,包含8个预测基因,为下一步基因的克隆和功能研究奠定了基础.  相似文献   

8.
张晓辉  余宁梅  习岗  孟晓丽 《科学通报》2011,56(33):2827-2834
为了定量描述植物电信号功率谱特征及其变化, 定义了植物电信号边缘频率(SEF)、重心频率(SCF)、功率指数(PI)和功率谱熵(PSE)并给出了计算方法, 研究了渗透胁迫下玉米叶片电信号功率谱的变化. 结果表明, 正常生长的玉米叶片电信号的SEF 约为0.2 Hz, SCF 约为0.1 Hz, 叶片电信号主要为0~0.1 Hz 的慢波; 在渗透胁迫2 h 时, 玉米叶片电信号的SEF 和SCF 向高频段移动, 0.1~0.2 Hz 的快波比重升高, 细胞活动受到激发, 与此同时, PSE 急剧增加, 讨论了渗透胁迫诱导的叶片电信号SCF 和PSE 升高的原因. 研究还发现, 在渗透胁迫过程中, PSE 与SCF 的变化之间有很强的关联性, 认为植物电信号功率谱PSE 或SCF 的变化可以作为渗透胁迫下叶片细胞开始对水分亏缺实施调控的灵敏信号, 通过对PSE 或SCF 的测量可以实现对植物需水状况的早期预警和诊断.  相似文献   

9.
蚕豆气孔保卫细胞中的NOS类蛋白定位及其功能分析   总被引:1,自引:0,他引:1  
刘新  王幼群  贾文锁  娄成后  张蜀秋 《科学通报》2006,51(21):2495-2500
利用免疫荧光显微镜技术和免疫胶体金标记技术确定蚕豆气孔保卫细胞中存在一氧化氮合酶(NOS)类似蛋白, NOS主要分布在气孔保卫细胞的细胞核、细胞质、叶绿体、线粒体以及细胞壁上. 局部灼伤和外源茉莉酸(JA)都能提高蚕豆叶片和表皮NOS活性和一氧化氮(NO)水平, NOS的活性变化与叶片中的NO的变化趋势基本一致; NOS抑制剂L-NAME可抑制JA诱导的NO水平的增加. 由此推测, NOS途径是伤胁迫和JA诱导形成NO的主要途径. 药理学实验表明适当增加Ca2+浓度能够提高叶片NOS的活性和NO的水平, 说明蚕豆叶片NOS活性和NO的分布具有一定的钙依赖性. 保卫细胞中NOS及其催化形成的NO可能通过对气孔运动的调节参与植物对逆境的响应.  相似文献   

10.
湖北清江现代植物叶片正构烷烃和烯烃的季节性变化   总被引:5,自引:0,他引:5  
崔景伟  黄俊华  谢树成 《科学通报》2008,53(11):1318-1323
利用气相色谱和气相色谱-质谱联用仪分析了湖北清江岩溶地区5种植物叶片类脂物的季节性变化特征. 随季节的变化, 同一植物叶片正构烷烃的碳数分布范围和主峰碳数不变, 但正构烷烃的碳优势指数(CPI)从5月到11月逐渐降低, 这种变化可能与植物叶片在枯萎过程中类脂物的变化有关, 活体叶片与相应植物落叶的比较也证实了这点. 这反映了在第四纪沉积物中正构烷烃CPI可能与腐殖化过程有关而可以指示与之相关的气候环境条件. 不同植物的正构烷烃含量差别较大, 对沉积物的输入贡献不一. 正构烯烃含量和种类明显随季节变化, 可能与环境温度变化有关. 8月份温度最高, 正构烯烃的种类最少.  相似文献   

11.
小麦和大豆叶片荧光参数对强光响应的差异   总被引:5,自引:0,他引:5  
洪双松  许大全 《科学通报》1997,42(7):753-756
自然条件下高等植物的上层叶片经常受到强光的胁迫,尤其在晴天中午,光照强度远远超过叶片光合作用的饱和光强.为避免其光合器官被破坏,植物在漫长的进化过程中形成了一系列的保护机制,如改变叶片角度以减少所接受的光能,依赖叶黄素循环、光系统Ⅱ(PSⅡ)反应中心失活和PSⅡ循环电子传递的热耗散等.近年来,人们对于依赖叶黄素循环耗散掉过多激发能的保护机制研究得较多、较深入.但是,这种保护机制是否在所有植物中都能够发挥主要的作用呢?我们通过比较小麦和大豆叶片荧光参数对强光响应的异同,对这个问题进行了探讨.  相似文献   

12.
叶片是水稻主要的光合器官,适度卷曲有利于保持植株叶片直立而不披垂,增加中、下层叶片透光率,从而改善群体光照条件,是理想株型的重要组成,对水稻高产育种具有重要意义.利用甲基黄酸乙酯(EMS)诱变籼稻恢复系缙恢10号获得了一个遗传稳定的水稻生育后期卷叶突变体lrl1.lrl1的叶片在前期生长正常,从13叶龄开始,上三叶沿中脉向内卷曲,且随着生育期推进,卷曲度增加,在成熟期剑叶、倒二叶和倒三叶的卷曲度分别为73.66%,66.91%和45.81%.与野生型缙恢10号相比,除lrl1的千粒重(21.43 g)显著降低外,其他重要农艺性状均没有显著差异.lrl1的叶片小维管束间的泡状细胞数量减少、形状怪异、排列极不规则,导致小维管束之间的夹角变小,从而引起了其叶片的卷曲.lrl1的上三叶光合色素含量均显著高于野生型.但其功能叶净光合速率等均与野生型没有显著差异.经遗传分析和分子定位,该叶片卷曲受一对隐性核基因控制,位于第9染色体分子标记SWU-1和Ind6之间812 kb的区域.通过基因预测,在该区域共有129个候选基因,对其中3个可能与卷叶相关的基因测序,均未发现它们在lrl1与野生型间存在差异.以泡状细胞变化相关的6个卷叶基因在突变体lrl1中的real-time PCR分析表明,卷叶基因ROC5和RL14的表达明显上调,而ACL1,SRL1以及NAL7被下调,暗示了这些基因可能在同一通路上调控叶片的发育.该基因是一个新发现的基因,而且遗传行为简单,其相应突变体含有许多育种有利的性状,因而研究结果为该基因的克隆和功能研究及高产育种奠定了良好基础.  相似文献   

13.
为了验证植物叶片提取物作为环境友好型润滑油添加剂的摩擦学性能,提取球兰、大葱和茄子3种植物叶片表面蜡质作为考察对象.用MFT-R4000往复摩擦磨损试验机考察以PAO为基础油时,植物提取物作为添加剂在铝-钢摩擦副下的摩擦学性能,并采用扫描电子显微镜观察铝块磨斑的表面形貌.实验结果显示,不同润滑油添加剂显示了优异的抗磨减摩性能.摩擦系数大小顺序为:球兰茄子大葱Mo DTCPAO.抗磨性能大小顺序为:茄子球兰大葱PAOMo DTC.相比Mo DTC而言,3种植物添加剂表现出优良的抗磨和减摩性能.这可能与植物蜡质层含有醇、酯和酸等成分有关.扫描电子显微镜照片显示,与基础油磨斑相比,植物叶片提取物作为添加剂润滑的磨斑小且磨斑表面光滑.为了进一步研究植物添加剂的抗磨减摩机制,以茄子为例,通过对铝合金磨痕表面进行XPS分析,结果表明叶片提取物在磨斑表面可能以2 3Al O、乙二醇和丙三醇的复合物两种形式存在.3种植物叶片提取物在铝-钢摩擦系统中均具有良好的减摩抗磨性能,是有良好发展前景的环境友好型润滑油添加剂.  相似文献   

14.
一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应   总被引:13,自引:0,他引:13  
从叶绿素、 MDA和质膜相对透性3个方面的变化证实了0.1和1 mmol/L的一氧化氮(nitric oxide, NO)供体硝普钠(sodium nitroprusside, SNP)分别对150和300 mmol/L NaCl胁迫下的小麦(Triticum aestivum L)叶片氧化损伤有明显的缓解效应. NO能够显著诱导盐胁迫下小麦叶片SOD和CAT活力的上升, 延缓和H2O2的积累, 同时促进抗氧化物质脯氨酸的含量上升, 从而减轻盐胁迫下小麦叶片的氧化损伤.  相似文献   

15.
杨红华 《科学通报》1994,39(17):1610-1610
Thionin(硫堇)是一类小分子量多肽.这种蛋白最早在小麦面粉中发现,随后在其它禾谷类作物和一些双子叶植物如十字花科的Crambe abyssinica的种子中也发现了类似的蛋白.1987年在大麦叶片、1993年在烟草花器中又发现了叶片和花特异的thionin.Thionin有以下几个特点:分子量小约500D,热稳定性高,带正电荷,巯基含量高.  相似文献   

16.
苏震 《科学通报》1994,39(20):1893-1893
近年来对SO_2损伤机制的研究结果证实,通过气孔进入叶片的SO_2会进行:SO_2十H_2O→H_2SO_3(?)H~ HSO_3~-(?)2H~ SO_3~(2-)的毒性反应,致使细胞内H~ 的释放,同时在SO_3~(2-)氧化为SO_4~(2-)的过程中产生大量的活性氧自由基(如OH,O_2~-,H_2O_2等)毒害细胞.因此,有必要研究SO_2侵入叶片后的损伤机制和过程.用毛白杨叶片的低水平化学发光(简称LCL)来检测SO_2的污染,马玉琴等人研究已有良好开端.通过薰蒸实验,发现在SO_2急性损伤条件下,叶片的  相似文献   

17.
张扬军 《科学通报》1994,39(23):2207-2207
Wennerstrom和Puterbaugh于1984年推出了三维激波损失模型.跨音压气机转子叶片排中的实测结果和理论分析表明,在设计工况下,从S_1流面看,通道激波几乎垂直于来流方向.沿展向方向,由于转子叶片的后掠,激波面是倾斜的.但在叶尖区域,激波和机匣附面层的复杂的相互作用,使得Wennerstrom和Puterbaugh的按无粘流动考虑所形成的三维激波曲面沿展向方向倾斜进入机匣表面的假设不成立.  相似文献   

18.
小麦产量形成对大气臭氧浓度升高响应的整合分析   总被引:9,自引:0,他引:9  
应用整合分析(meta-analysis)方法定量研究了大气臭氧(O3)浓度增加对小麦光合色素、气体交换和产量形成的影响. 通过Web of Sciences和中国期刊全文数据库检索, 共收集39篇原始论文. 结果表明, 大气臭氧浓度增加可导致小麦的产量在当前环境浓度的基础上降低26%, 籽粒重、穗粒数和穗数分别降低18%, 11%和5%, 收获指数减少11%. 叶片生理对大气臭氧浓度增加的响应比产量敏感得多, 如光饱和光合速率、气孔导度和叶绿素含量分别下降40%, 31%和46%. 春小麦和冬小麦对臭氧的响应相似. 大部分指标显示了小麦叶片生理和产量的降低随着臭氧浓度增加而线性增加的趋势. 在小麦灌浆期, 臭氧浓度增加引起叶片的光合速率、气孔导度和叶绿素含量降低得最大. 大气CO2浓度升高可以明显减轻或抵消大气臭氧浓度增加引起的减产效应.  相似文献   

19.
突变体es-t 是经EMS诱变处理日本晴后筛选获得的, 该突变体主要表现为叶片从苗期开始黄化, 叶绿素含量显著降低, 随着其生长发育发黄的叶片伴有铁锈色的小斑点, 尤以叶尖和叶缘为甚, 表现严重的早衰现象, 故将之命名为es-t (early senescence-temporary). 扫描电子显微镜显示, 突变体叶片表面比野生型的光滑, 且气孔周围缺乏硅质化突起; 另外, 突变体的叶绿体发育不正常, 含有大量大颗粒的淀粉粒; 组织切片则显示突变体的厚壁细胞及维管束的发育表现异常. 遗传分析表明, es-t 为新发现的早衰突变体, 受一隐性基因控制, 借助图位克隆的手段将之定位于42.1 kb 的物理区间内, 为进一步克隆该基因并阐明叶片早衰的分子机制奠定基础.  相似文献   

20.
1981年7月在云南省进行烟草病毒病考察时,在蒙自县新安公社新街大队山坡上,发现豆科植物补骨脂(Psolaria corylifolia Linn)变叶病.病株症状:节间缩短、叶片丛生、叶片较  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号