首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
设P是一个域,Γn是满足{αEij|i,j=1,2,…,n,α∈P} (P)的一个乘法半群,其中Mn(P)定义P上所有n×n矩阵组成的乘法半群.证明了一个结果:若f:Γn→Mn(P)是一个保零矩阵的乘法映射,Fij(i,j=1,2,…,n)是Mn(P)中n2个矩阵,且满足FijFkl=δjkFil(i,j,k,l=1,2,…,n),则存在可逆阵S∈Mn(P),使得f(Fij)=S-1FijS,i,j=1,2,…,n.由此刻画了Γn的保迹反乘法映射.  相似文献   

2.
证明了B(X)到B(Y)上保一秩算子点谱的反乘法映射ψ具有形式ψ(T)=AT*A^-1。  相似文献   

3.
设Γn是满足{aEij|i,j=1,2,…,n,a∈R}(∪)Γn(∪)Mn(R)的一个乘法半群,其中Mn(R)定义R上所有n×n矩阵组成的乘法半群,证明了若f : Γn→Mn(R)是一个保Frobenius范数映射,则存在正交阵U∈Mn(R),使得U'f(A)=U-1f(A)U=A,(A)A∈Γn.  相似文献   

4.
设H和K为复Hilbert空间,且ψ为B(H)到B(K)的保数值域反乘法满射,证明了存在A∈B(H,K),使和对每个T∈B(H)都有形式ψ(T)=AT^*A^-1,其中T^*为T的共轭算子。  相似文献   

5.
An(F)((∩){aEij 1≤i≤j≤n})为域F上n阶上三角矩阵Tn(F)上的幂等矩阵集Υn(F)的乘法半群.f:An(F)→Υn(F)是满足trf(A)=trA,(A)A∈An(F)的乘法映射,那么存在可逆上三角矩阵P∈Tn(F),使得f(A)=P-1AP.  相似文献   

6.
设N为Hilbert空间H上的Nest,满足H-≠H,N-≠N( N∈N),则Nest代数algN上保秩乘法映射φ具有形式:φ(T)=ATA-1, T∈algN,其中A为线性或共轭线性有界可逆算子。  相似文献   

7.
矩阵代数上的可乘映射   总被引:4,自引:0,他引:4  
本文得到矩阵代数上可乘映射的一个结构定理。在此基础上,给出矩阵代数上保秩一、保谱半径、保数值半径、保半正定性、保自伴性、保正规性或保酉性的可乘映射的刻画。  相似文献   

8.
本文首先提出了矩阵的弱迹概念,并对于一类可对称化的非对称矩降证明了两条定理,即证明弱迹均小于寻常的追迹,并大于矩阵的最大特征值。故以此弱迹作为最大特征值的上界,比追迹优越得多.应用本文的定理可以建立一系列精度越来越高的近似计算式,其精度比追迹定理所给出的值有大幅度的提高.  相似文献   

9.
设N为Hilbert空间H上的Nest,满足H_≠H,N_≠N(任意N∈N),则Nest代数alnN上保秩乘法映射φ具有形式:φ(T)=ATA^-1,任意T∈algN,其中A为线性或共轭线性有界可逆算子。  相似文献   

10.
李小平 《科技资讯》2007,(29):242-243
本文首先阐述了预备知识和定义与引理,接着讨论了Hermite矩阵迹的若干性质和两个定理,最后分析了矩阵迹的应用.因此本文具有深刻的理论意义和广泛的实际应用.  相似文献   

11.
关于Hermite矩阵迹的一个不等式   总被引:1,自引:0,他引:1  
设A、B是两个n阶Hermite矩阵 ,证明了(AB)2的迹小于等于A2B2的迹 ,并且给出了该不等式成立的充要条件  相似文献   

12.
设N为纯原子nest,满足0 ≠0,H-=H,ψ:algN→algN为保数值域乘法满射,本证明了,对任意T∈algN,有ψ(T)=ATA^-1,其中A为有界可逆算子。  相似文献   

13.
研究若干复矩阵乘积之迹的不等式,并利用得到的不等式推出两个Hermite半正定矩阵乘积的任意次幂之迹的不等式,利用矩阵的分解给出一个Hermite半正定矩阵任意次幂之迹的不等式,推广了相关结果.  相似文献   

14.
设Tn(K)为域K上的n×n上三角矩阵环.证明了当K2时,映射f:Tn(K)→Tn(K)是加性的当且仅当对任意可逆矩阵A,B∈Tn(K),都有f(A+B)=f(A)+f(B),并给出了当K=2时该结论不成立的反例.  相似文献   

15.
关于稳定矩阵乘积迹一个不等式的注记   总被引:1,自引:0,他引:1  
举例说明陈福元关于稳定阵乘积迹的一个不等式不成立.  相似文献   

16.
证明了上三角矩阵代数上的Jordan triple可乘映射是可加的,并给出具体刻画,同时给出一个例子说明了上三角矩阵代数上的Jordan半可乘映射不一定可加.  相似文献   

17.
本文考虑了复数域上正定厄米特矩阵的行列式与迹间的一类不等式,得到了几个有趣的不等式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号