首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bierhaus EB  Chapman CR  Merline WJ 《Nature》2005,437(7062):1125-1127
For several decades, most planetary researchers have regarded the impact crater populations on solid-surfaced planets and smaller bodies as predominantly reflecting the direct ('primary') impacts of asteroids and comets. Estimates of the relative and absolute ages of geological units on these objects have been based on this assumption. Here we present an analysis of the comparatively sparse crater population on Jupiter's icy moon Europa and suggest that this assumption is incorrect for small craters. We find that 'secondaries' (craters formed by material ejected from large primary impact craters) comprise about 95 per cent of the small craters (diameters less than 1 km) on Europa. We therefore conclude that large primary impacts into a solid surface (for example, ice or rock) produce far more secondaries than previously believed, implying that the small crater populations on the Moon, Mars and other large bodies must be dominated by secondaries. Moreover, our results indicate that there have been few small comets (less than 100 m diameter) passing through the jovian system in recent times, consistent with dynamical simulations.  相似文献   

2.
Observations of martian surface morphology have been used to argue that an ancient ocean once existed on Mars. It has been thought that significant quantities of such water could have been supplied to the martian surface through volcanic outgassing, but this suggestion is contradicted by the low magmatic water content that is generally inferred from chemical analyses of igneous martian meteorites. Here, however, we report the distributions of trace elements within pyroxenes of the Shergotty meteorite--a basalt body ejected 175 million years ago from Mars--as well as hydrous and anhydrous crystallization experiments that, together, imply that water contents of pre-eruptive magma on Mars could have been up to 1.8%. We found that in the Shergotty meteorite, the inner cores of pyroxene minerals (which formed at depth in the martian crust) are enriched in soluble trace elements when compared to the outer rims (which crystallized on or near to the martian surface). This implies that water was present in pyroxenes at depth but was largely lost as pyroxenes were carried to the surface during magma ascent. We conclude that ascending magmas possibly delivered significant quantities of water to the martian surface in recent times, reconciling geologic and petrologic constraints on the outgassing history of Mars.  相似文献   

3.
Phyllosilicates on Mars and implications for early martian climate   总被引:1,自引:0,他引:1  
The recent identification of large deposits of sulphates by remote sensing and in situ observations has been considered evidence of the past presence of liquid water on Mars. Here we report the unambiguous detection of diverse phyllosilicates, a family of aqueous alteration products, on the basis of observations by the OMEGA imaging spectrometer on board the Mars Express spacecraft. These minerals are mainly associated with Noachian outcrops, which is consistent with an early active hydrological system, sustaining the long-term contact of igneous minerals with liquid water. We infer that the two main families of hydrated alteration products detected-phyllosilicates and sulphates--result from different formation processes. These occurred during two distinct climatic episodes: an early Noachian Mars, resulting in the formation of hydrated silicates, followed by a more acidic environment, in which sulphates formed.  相似文献   

4.
Gusev crater was selected as the landing site for the Spirit rover because of the possibility that it once held a lake. Thus one of the rover's tasks was to search for evidence of lake sediments. However, the plains at the landing site were found to be covered by a regolith composed of olivine-rich basaltic rock and windblown 'global' dust. The analyses of three rock interiors exposed by the rock abrasion tool showed that they are similar to one another, consistent with having originated from a common lava flow. Here we report the investigation of soils, rock coatings and rock interiors by the Spirit rover from sol (martian day) 1 to sol 156, from its landing site to the base of the Columbia hills. The physical and chemical characteristics of the materials analysed provide evidence for limited but unequivocal interaction between water and the volcanic rocks of the Gusev plains. This evidence includes the softness of rock interiors that contain anomalously high concentrations of sulphur, chlorine and bromine relative to terrestrial basalts and martian meteorites; sulphur, chlorine and ferric iron enrichments in multilayer coatings on the light-toned rock Mazatzal; high bromine concentration in filled vugs and veins within the plains basalts; positive correlations between magnesium, sulphur and other salt components in trench soils; and decoupling of sulphur, chlorine and bromine concentrations in trench soils compared to Gusev surface soils, indicating chemical mobility and separation.  相似文献   

5.
在固体地球的假设下,从电子在转动参照系中的Newton运动方程出发,运用经典的电子气模型,指出了地球在自转发生变化时将产生惯性电流,从而影响地球磁矩.由此推论:地磁场有可能因短暂时间内地球自转角动量的变化而受到影响,而小行星、陨星等与地球的天体碰撞,对地磁场有着重大的直接影响,包括地磁场的反向.  相似文献   

6.
科学家由于在对火星的观察中观察到水存在的信息,因而进一步考虑研究在火星中存在生命的可能性,这一研究是科学上十分重要而有意义的。  相似文献   

7.
Phyllosilicates, a class of hydrous mineral first definitively identified on Mars by the OMEGA (Observatoire pour la Mineralogie, L'Eau, les Glaces et l'Activitié) instrument, preserve a record of the interaction of water with rocks on Mars. Global mapping showed that phyllosilicates are widespread but are apparently restricted to ancient terrains and a relatively narrow range of mineralogy (Fe/Mg and Al smectite clays). This was interpreted to indicate that phyllosilicate formation occurred during the Noachian (the earliest geological era of Mars), and that the conditions necessary for phyllosilicate formation (moderate to high pH and high water activity) were specific to surface environments during the earliest era of Mars's history. Here we report results from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) of phyllosilicate-rich regions. We expand the diversity of phyllosilicate mineralogy with the identification of kaolinite, chlorite and illite or muscovite, and a new class of hydrated silicate (hydrated silica). We observe diverse Fe/Mg-OH phyllosilicates and find that smectites such as nontronite and saponite are the most common, but chlorites are also present in some locations. Stratigraphic relationships in the Nili Fossae region show olivine-rich materials overlying phyllosilicate-bearing units, indicating the cessation of aqueous alteration before emplacement of the olivine-bearing unit. Hundreds of detections of Fe/Mg phyllosilicate in rims, ejecta and central peaks of craters in the southern highland Noachian cratered terrain indicate excavation of altered crust from depth. We also find phyllosilicate in sedimentary deposits clearly laid by water. These results point to a rich diversity of Noachian environments conducive to habitability.  相似文献   

8.
9.
Yang J  Goldstein JI  Scott ER 《Nature》2007,446(7138):888-891
In our Solar System, the planets formed by collisional growth from smaller bodies. Planetesimals collided to form Moon-to-Mars-sized protoplanets in the inner Solar System in 0.1-1 Myr, and these collided more energetically to form planets. Insights into the timing and nature of collisions during planetary accretion can be gained from meteorite studies. In particular, iron meteorites offer the best constraints on early stages of planetary accretion because most are remnants of the oldest bodies, which accreted and melted in <1.5 Myr, forming silicate mantles and iron-nickel metallic cores. Cooling rates for various groups of iron meteorites suggest that if the irons cooled isothermally in the cores of differentiated bodies, as conventionally assumed, these bodies were 5-200 km in diameter. This picture is incompatible, however, with the diverse cooling rates observed within certain groups, most notably the IVA group, but the large uncertainties associated with the measurements do not preclude it. Here we report cooling rates for group IVA iron meteorites that range from 100 to 6,000 K Myr(-1), increasing with decreasing bulk Ni. Improvements in the cooling rate model, smaller error bars, and new data from an independent cooling rate indicator show that the conventional interpretation is no longer viable. Our results require that the IVA meteorites cooled in a 300-km-diameter metallic body that lacked an insulating mantle. This body probably formed approximately 4,500 Myr ago in a 'hit-and-run' collision between Moon-to-Mars-sized protoplanets. This demonstrates that protoplanets of approximately 10(3) km size accreted within the first 1.5 Myr, as proposed by theory, and that fragments of these bodies survived as asteroids.  相似文献   

10.
C Leovy 《Nature》2001,412(6843):245-249
Imagine a planet very much like the Earth, with similar size, rotation rate and inclination of rotation axis, possessing an atmosphere and a solid surface, but lacking oceans and dense clouds of liquid water. We might expect such a desert planet to be dominated by large variations in day-night and winter-summer weather. Dust storms would be common. Observations and simulations of martian climate confirm these expectations and provide a wealth of detail that can help resolve problems of climate evolution.  相似文献   

11.
Vaniman DT  Bish DL  Chipera SJ  Fialips CI  Carey JW  Feldman WC 《Nature》2004,431(7009):663-665
Recent reports of approximately 30 wt% of sulphate within saline sediments on Mars--probably occurring in hydrated form--suggest a role for sulphates in accounting for equatorial H2O observed in a global survey by the Odyssey spacecraft. Among salt hydrates likely to be present, those of the MgSO4*nH2O series have many hydration states. Here we report the exposure of several of these phases to varied temperature, pressure and humidity to constrain their possible H2O contents under martian surface conditions. We found that crystalline structure and H2O content are dependent on temperature-pressure history, that an amorphous hydrated phase with slow dehydration kinetics forms at <1% relative humidity, and that equilibrium calculations may not reflect the true H2O-bearing potential of martian soils. Mg sulphate salts can retain sufficient H2O to explain a portion of the Odyssey observations. Because phases in the MgSO4*nH2O system are sensitive to temperature and humidity, they can reveal much about the history of water on Mars. However, their ease of transformation implies that salt hydrates collected on Mars will not be returned to Earth unmodified, and that accurate in situ analysis is imperative.  相似文献   

12.
Levy RL  Wolf CJ  Grayson MA  Gilbert J  Gelpi E  Updegrove WS  Zlatkis A  Oro' J 《Nature》1970,227(5254):148-150
It appears unlikely that the organic material detected in the meteorite that fell in Mexico last year can have been introduced by contamination.  相似文献   

13.
基于数学形态学的月海圆形撞击坑自动识别方法   总被引:2,自引:0,他引:2  
撞击坑是月球表面最为常见的地质单元,是研究月球地质演化历史的重要对象,也是月球地质定年的基本依据,因此撞击坑识别具有重要意义.本文根据嫦娥一号采集的月球CCD图像,基于数学形态学方法对撞击坑进行自动识别提取研究.在CCD图像中,撞击坑边缘的灰度变化明显,梯度较大,由此可以计算获取撞击坑的边缘形态;一般情况下,依据图像灰度梯度突变,通过边缘检测得到的撞击坑边缘比较粗糙、不连续,而且有断口和小洞.根据数学形态学的基本思想——用具有一定形态的结构元素去量度和提取图像中的对应形状,对识别出来的边缘作进一步处理,可得到较光滑、连续的撞击坑边缘弧,从而能方便地拟合出撞击坑边缘,并获得撞击坑的直径与位置.用数学形态学进行撞击坑识别与提取的主要步骤是:首先对CCD影像计算灰度的梯度,得到梯度图像,然后进行二值化,再使用数学形态学分离出边缘,最后用圆形对撞击坑进行拟合并计算出撞击坑的位置和直径.本文分别对月海和月陆地区进行撞击坑识别实验,结果表明,我们设计的算法能够识别的最小撞击坑直径为10个像素.其中月海区域撞击坑识别准确可靠;而月陆区域岩性差异大、地形起伏,造成CCD图像背景变化较大,其识别效果相对差一些,有待进一步改善.  相似文献   

14.
Compositional mapping of Mars at the 100-metre scale with the Mars Odyssey Thermal Emission Imaging System (THEMIS) has revealed a wide diversity of igneous materials. Volcanic evolution produced compositions from low-silica basalts to high-silica dacite in the Syrtis Major caldera. The existence of dacite demonstrates that highly evolved lavas have been produced, at least locally, by magma evolution through fractional crystallization. Olivine basalts are observed on crater floors and in layers exposed in canyon walls up to 4.5 km beneath the surface. This vertical distribution suggests that olivine-rich lavas were emplaced at various times throughout the formation of the upper crust, with their growing inventory suggesting that such ultramafic (picritic) basalts may be relatively common. Quartz-bearing granitoid rocks have also been discovered, demonstrating that extreme differentiation has occurred. These observations show that the martian crust, while dominated by basalt, contains a diversity of igneous materials whose range in composition from picritic basalts to granitoids rivals that found on the Earth.  相似文献   

15.
Chan MA  Beitler B  Parry WT  Ormö J  Komatsu G 《Nature》2004,429(6993):731-734
Recent exploration has revealed extensive geological evidence for a water-rich past in the shallow subsurface of Mars. Images of in situ and loose accumulations of abundant, haematite-rich spherical balls from the Mars Exploration Rover 'Opportunity' landing site at Meridiani Planum bear a striking resemblance to diagenetic (post-depositional), haematite-cemented concretions found in the Jurassic Navajo Sandstone of southern Utah. Here we compare the spherical concretions imaged on Mars to these terrestrial concretions, and investigate the implications for analogous groundwater-related formation mechanisms. The morphology, character and distribution of Navajo haematite concretions allow us to infer host-rock properties and fluid processes necessary for similar features to develop on Mars. We conclude that the formation of such spherical haematite concretions requires the presence of a permeable host rock, groundwater flow and a chemical reaction front.  相似文献   

16.
17.
18.
Discovery of an aurora on Mars   总被引:1,自引:0,他引:1  
In the high-latitude regions of Earth, aurorae are the often-spectacular visual manifestation of the interaction between electrically charged particles (electrons, protons or ions) with the neutral upper atmosphere, as they precipitate along magnetic field lines. More generally, auroral emissions in planetary atmospheres "are those that result from the impact of particles other than photoelectrons" (ref. 1). Auroral activity has been found on all four giant planets possessing a magnetic field (Jupiter, Saturn, Uranus and Neptune), as well as on Venus, which has no magnetic field. On the nightside of Venus, atomic O emissions at 130.4 nm and 135.6 nm appear in bright patches of varying sizes and intensities, which are believed to be produced by electrons with energy <300 eV (ref. 7). Here we report the discovery of an aurora in the martian atmosphere, using the ultraviolet spectrometer SPICAM on board Mars Express. It corresponds to a distinct type of aurora not seen before in the Solar System: it is unlike aurorae at Earth and the giant planets, which lie at the foot of the intrinsic magnetic field lines near the magnetic poles, and unlike venusian auroras, which are diffuse, sometimes spreading over the entire disk. Instead, the martian aurora is a highly concentrated and localized emission controlled by magnetic field anomalies in the martian crust.  相似文献   

19.
Dynamics of ice ages on Mars   总被引:1,自引:0,他引:1  
Schorghofer N 《Nature》2007,449(7159):192-194
Unlike Earth, where astronomical climate forcing is comparatively small, Mars experiences dramatic changes in incident sunlight that are capable of redistributing ice on a global scale. The geographic extent of the subsurface ice found poleward of approximately +/-60 degrees latitude on both hemispheres of Mars coincides with the areas where ice is stable. However, the tilt of Mars' rotation axis (obliquity) changed considerably in the past several million years. Earlier work has shown that regions of ice stability, which are defined by temperature and atmospheric humidity, differed in the recent past from today's, and subsurface ice is expected to retreat quickly when unstable. Here I explain how the subsurface ice sheets could have evolved to the state in which we see them today. Simulations of the retreat and growth of ground ice as a result of sublimation loss and recharge reveal forty major ice ages over the past five million years. Today, this gives rise to pore ice at mid-latitudes and a three-layered depth distribution in the high latitudes of, from top to bottom, a dry layer, pore ice, and a massive ice sheet. Combined, these layers provide enough ice to be compatible with existing neutron and gamma-ray measurements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号