首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The genetic analysis of congenital skull malformations provides insight into normal mechanisms of calvarial osteogenesis. Enlarged parietal foramina (PFM) are oval defects of the parietal bones caused by deficient ossification around the parietal notch, which is normally obliterated during the fifth fetal month. PFM are usually asymptomatic, but may be associated with headache, scalp defects and structural or vascular malformations of the brain. Inheritance is frequently autosomal dominant, but no causative mutations have been identified in non-syndromic cases. We describe here heterozygous mutations of the homeobox gene MSX2 (located on 5q34-q35) in three unrelated families with PFM. One is a deletion of approximately 206 kb including the entire gene and the others are intragenic mutations of the DNA-binding homeodomain (RK159-160del and R172H) that predict disruption of critical intramolecular and DNA contacts. Mouse Msx2 protein with either of the homeodomain mutations exhibited more than 85% reduction in binding to an optimal Msx2 DNA-binding site. Our findings contrast with the only described MSX2 homeodomain mutation (P148H), associated with craniosynostosis, that binds with enhanced affinity to the same target. This demonstrates that MSX2 dosage is critical for human skull development and suggests that PFM and craniosynostosis result, respectively, from loss and gain of activity in an MSX2-mediated pathway of calvarial osteogenic differentiation.  相似文献   

4.
5.
6.
Williams syndrome is a neurodevelopmental disorder caused by the hemizygous deletion of 1.6 Mb on human chromosome 7q11.23. This region comprises the gene CYLN2, encoding CLIP-115, a microtubule-binding protein of 115 kD. Using a gene-targeting approach, we provide evidence that mice with haploinsufficiency for Cyln2 have features reminiscent of Williams syndrome, including mild growth deficiency, brain abnormalities, hippocampal dysfunction and particular deficits in motor coordination. Absence of CLIP-115 also leads to increased levels of CLIP-170 (a closely related cytoplasmic linker protein) and dynactin at the tips of growing microtubules. This protein redistribution may affect dynein motor regulation and, together with the loss of CLIP-115-specific functions, underlie neurological alterations in Williams syndrome.  相似文献   

7.
In addition to delivering a haploid genome to the egg, sperm have additional critical functions, including egg activation, origination of the zygote centrosome and delivery of paternal factors. Despite this, existing knowledge of the molecular basis of sperm form and function is limited. We used whole-sperm mass spectrometry to identify 381 proteins of the Drosophila melanogaster sperm proteome (DmSP). This approach identified mitochondrial, metabolic and cytoskeletal proteins, in addition to several new functional categories. We also observed nonrandom genomic clustering of sperm genes and underrepresentation on the X chromosome. Identification of widespread functional constraint on the proteome indicates that sexual selection has had a limited role in the overall evolution of D. melanogaster sperm. The relevance of the DmSP to the study of mammalian sperm function and fertilization mechanisms is demonstrated by the identification of substantial homology between the DmSP and proteins of the mouse axoneme accessory structure.  相似文献   

8.
The relationship between the number of randomly accumulated mutations in a genome and fitness is a key parameter in evolutionary biology. Mutations may interact such that their combined effect on fitness is additive (no epistasis), reinforced (synergistic epistasis) or mitigated (antagonistic epistasis). We measured the decrease in fitness caused by increasing mutation number in the bacterium Salmonella typhimurium using a regulated, error-prone DNA polymerase (polymerase IV, DinB). As mutations accumulated, fitness costs increased at a diminishing rate. This suggests that random mutations interact such that their combined effect on fitness is mitigated and that the genome is buffered against the fitness reduction caused by accumulated mutations. Levels of the heat shock chaperones DnaK and GroEL increased in lineages that had accumulated many mutations, and experimental overproduction of GroEL further increased the fitness of lineages containing deleterious mutations. These findings suggest that overexpression of chaperones contributes to antagonistic epistasis.  相似文献   

9.
Maize is both an exciting model organism in plant genetics and also the most important crop worldwide for food, animal feed and bioenergy production. Recent genome-wide association and metabolic profiling studies aimed to resolve quantitative traits to their causal genetic loci and key metabolic regulators. Here we present a complementary approach that exploits large-scale genomic and metabolic information to predict complex, highly polygenic traits in hybrid testcrosses. We crossed 285 diverse Dent inbred lines from worldwide sources with two testers and predicted their combining abilities for seven biomass- and bioenergy-related traits using 56,110 SNPs and 130 metabolites. Whole-genome and metabolic prediction models were built by fitting effects for all SNPs or metabolites. Prediction accuracies ranged from 0.72 to 0.81 for SNPs and from 0.60 to 0.80 for metabolites, allowing a reliable screening of large collections of diverse inbred lines for their potential to create superior hybrids.  相似文献   

10.
11.
Systematic genetic interaction studies have illuminated many cellular processes. Here we quantitatively examine genetic interactions among 26 Saccharomyces cerevisiae genes conferring resistance to the DNA-damaging agent methyl methanesulfonate (MMS), as determined by chemogenomic fitness profiling of pooled deletion strains. We constructed 650 double-deletion strains, corresponding to all pairings of these 26 deletions. The fitness of single- and double-deletion strains were measured in the presence and absence of MMS. Genetic interactions were defined by combining principles from both statistical and classical genetics. The resulting network predicts that the Mph1 helicase has a role in resolving homologous recombination-derived DNA intermediates that is similar to (but distinct from) that of the Sgs1 helicase. Our results emphasize the utility of small molecules and multifactorial deletion mutants in uncovering functional relationships and pathway order.  相似文献   

12.
13.
The bacterial genus Bartonella comprises 21 pathogens causing characteristic intraerythrocytic infections. Bartonella bacilliformis is a severe pathogen representing an ancestral lineage, whereas the other species are benign pathogens that evolved by radial speciation. Here, we have used comparative and functional genomics to infer pathogenicity genes specific to the radiating lineage, and we suggest that these genes may have facilitated adaptation to the host environment. We determined the complete genome sequence of Bartonella tribocorum by shotgun sequencing and functionally identified 97 pathogenicity genes by signature-tagged mutagenesis. Eighty-one pathogenicity genes belong to the core genome (1,097 genes) of the radiating lineage inferred from genome comparison of B. tribocorum, Bartonella henselae and Bartonella quintana. Sixty-six pathogenicity genes are present in B. bacilliformis, and one has been lost by deletion. The 14 pathogenicity genes specific for the radiating lineage encode two laterally acquired type IV secretion systems, suggesting that these systems have a role in host adaptability.  相似文献   

14.
Integration of genome-wide expression profiling with linkage analysis is a new approach to identifying genes underlying complex traits. We applied this approach to the regulation of gene expression in the BXH/HXB panel of rat recombinant inbred strains, one of the largest available rodent recombinant inbred panels and a leading resource for genetic analysis of the highly prevalent metabolic syndrome. In two tissues important to the pathogenesis of the metabolic syndrome, we mapped cis- and trans-regulatory control elements for expression of thousands of genes across the genome. Many of the most highly linked expression quantitative trait loci are regulated in cis, are inherited essentially as monogenic traits and are good candidate genes for previously mapped physiological quantitative trait loci in the rat. By comparative mapping we generated a data set of 73 candidate genes for hypertension that merit testing in human populations. Mining of this publicly available data set is expected to lead to new insights into the genes and regulatory pathways underlying the extensive range of metabolic and cardiovascular disease phenotypes that segregate in these recombinant inbred strains.  相似文献   

15.
16.
Prior studies have identified recurrent oncogenic mutations in colorectal adenocarcinoma and have surveyed exons of protein-coding genes for mutations in 11 affected individuals. Here we report whole-genome sequencing from nine individuals with colorectal cancer, including primary colorectal tumors and matched adjacent non-tumor tissues, at an average of 30.7× and 31.9× coverage, respectively. We identify an average of 75 somatic rearrangements per tumor, including complex networks of translocations between pairs of chromosomes. Eleven rearrangements encode predicted in-frame fusion proteins, including a fusion of VTI1A and TCF7L2 found in 3 out of 97 colorectal cancers. Although TCF7L2 encodes TCF4, which cooperates with β-catenin in colorectal carcinogenesis, the fusion lacks the TCF4 β-catenin-binding domain. We found a colorectal carcinoma cell line harboring the fusion gene to be dependent on VTI1A-TCF7L2 for anchorage-independent growth using RNA interference-mediated knockdown. This study shows previously unidentified levels of genomic rearrangements in colorectal carcinoma that can lead to essential gene fusions and other oncogenic events.  相似文献   

17.
18.
19.
Geographic patterns of genetic variation, including variation at drug metabolizing enzyme (DME) loci and drug targets, indicate that geographic structuring of inter-individual variation in drug response may occur frequently. This raises two questions: how to represent human population genetic structure in the evaluation of drug safety and efficacy, and how to relate this structure to drug response. We address these by (i) inferring the genetic structure present in a heterogeneous sample and (ii) comparing the distribution of DME variants across the inferred genetic clusters of individuals. We find that commonly used ethnic labels are both insufficient and inaccurate representations of the inferred genetic clusters, and that drug-metabolizing profiles, defined by the distribution of DME variants, differ significantly among the clusters. We note, however, that the complexity of human demographic history means that there is no obvious natural clustering scheme, nor an obvious appropriate degree of resolution. Our comparison of drug-metabolizing profiles across the inferred clusters establishes a framework for assessing the appropriate level of resolution in relating genetic structure to drug response.  相似文献   

20.
Little is known about the genetic regulation of medulloblastoma dissemination, but metastatic medulloblastoma is highly associated with poor outcome. We obtained expression profiles of 23 primary medulloblastomas clinically designated as either metastatic (M+) or non-metastatic (M0) and identified 85 genes whose expression differed significantly between classes. Using a class prediction algorithm based on these genes and a leave-one-out approach, we assigned sample class to these tumors (M+ or M0) with 72% accuracy and to four additional independent tumors with 100% accuracy. We also assigned the metastatic medulloblastoma cell line Daoy to the metastatic class. Notably, platelet-derived growth factor receptor alpha (PDGFRA) and members of the downstream RAS/mitogen-activated protein kinase (MAPK) signal transduction pathway are upregulated in M+ tumors. Immunohistochemical validation on an independent set of tumors shows significant overexpression of PDGFRA in M+ tumors compared to M0 tumors. Using in vitro assays, we show that platelet-derived growth factor alpha (PDGFA) enhances medulloblastoma migration and increases downstream MAP2K1 (MEK1), MAP2K2 (MEK2), MAPK1 (p42 MAPK) and MAPK3 (p44 MAPK) phosphorylation in a dose-dependent manner. Neutralizing antibodies to PDGFRA blocks MAP2K1, MAP2K2 and MAPK1/3 phosphorylation, whereas U0126, a highly specific inhibitor of MAP2K1 and MAP2K2, also blocks MAPK1/3. Both inhibit migration and prevent PDGFA-stimulated migration. These results provide the first insight into the genetic regulation of medulloblastoma metastasis and are the first to suggest a role for PDGFRA and the RAS/MAPK signaling pathway in medulloblastoma metastasis. Inhibitors of PDGFRA and RAS proteins should therefore be considered for investigation as possible novel therapeutic strategies against medulloblastoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号