首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
基于微气象环境,运用风力机设计的基本理论与方法,确定了风力机叶片尖速比、叶片数、风轮直径、弦长、安装角等关键参数,结合三维空间的图形变换技术,确立了叶片空间坐标,借助SolidWorks软件建立了叶片的3D模型;运用有限元软件workbenck完成叶片在额定转速时受力分析及动态特性仿真;为小型风力机的设计、研发及工程应用奠定了理论基础.  相似文献   

2.
关于风力机叶片建模新方法的研究,根据叶片的特点,通过专业翼型软件Profili生成翼型曲线,再基于UG的多曲线创建体功能实现叶片的建模.此种方法,大大提高了建模的效率,并且对叶片的翼型有了更准确的模拟,以2000 kW水平轴的大型风力机为例,实现了叶片的建模.  相似文献   

3.
叶片构造形式是影响垂直轴风力机气动特性的重要因素。针对垂直轴风力机功率系数较低的问题,提出了一种新型的C型叶片。基于计算流体力学(CFD)高精度模拟工具,从扭矩系数、切向力系数、法向力系数、推力系数和升阻力系数等方面分析了风力机实度和叶尖速比保持不变时,C型叶片和初始安装角对垂直轴风力机的影响。结果表明:当突出度为15 mm时,功率系数CP取最大值,约为16.45%;正安装角有利于减小风力机推力幅值并延长风力机使用寿命;合适的安装角可减小阻力系数,获得更佳的气动特性。  相似文献   

4.
在不具备风场环境或风洞试验的条件下,基于有限元法建立大型风力机叶片的结构模型和随机风荷载作用下的模拟系统,研究了结构的固有频率和固有振型,以及在给定等效加速度功率谱密度条件下叶片的振动响应随频率的变化规律。通过计算对比发现,叶片结构模型合理有效,可用于模拟实验。在给定加速度功率谱密度条件下,叶尖位移在结构所容许的范围之内;速度和加速度值较小,叶根处最大应力远小于材料的极限应力,结构安全。研究通过对风力机叶片进行随机模拟实验,可以给风力机叶片的制造提供有效的理论依据和安全经济的结构形式。  相似文献   

5.
为了研究水平轴风力机气动性能随湍流强度的影响,基于CFD软件对不同来流风速工况下的33kW水平轴风力机风轮模型进行三维数值模拟,对比分析风力机在湍流强度I为0.1%、14%、25%时的气动性能。结果表明:随着来流湍流强度的增加,水平轴风力机叶片表面压差会有一定程度的减小,从而导致风力机风轮转矩减小,风力机风能利用效率明显降低。  相似文献   

6.
建立了大型风力机叶片的三维有限元模型,在考虑旋转惯性力等外力因素下,分析和对比了不同工况下叶片的振动频率,同时对叶片复合材料铺层角度和模态频率大小之间的关系进行了研究.结果表明,叶片模态频率受应力刚化影响较大,通过改变叶片单向层的纤维铺层角可对旋转叶片的模态频率进行调整.  相似文献   

7.
建立了大型风力机叶片的三维有限元模型,在考虑旋转惯性力等外力因素下,分析和对比了不同工况下叶片的振动频率,同时对叶片复合材料铺层角度和模态频率大小之间的关系进行了研究.结果表明,叶片模态频率受应力刚化影响较大,通过改变叶片单向层的纤维铺层角可对旋转叶片的模态频率进行调整.  相似文献   

8.
针对1.5 MW水平轴风力机,建立风力机的有限元模型。运用风振系数法和Betz动量理论计算风力机拟静力风载荷,以三角级数叠加法为基础分析了风力机塔架在复杂交变载荷作用下的响应,基于Miner线性疲劳累积损伤理论,分析了该类风力机塔架的疲劳寿命。结果表明,满足设计寿命要求30年,为风力机结构设计提供了参考依据。  相似文献   

9.
刘伟 《甘肃科学学报》2012,24(2):104-106
风场的湍流强度是影响风能利用和引起风力机振动的重要指标.按照风电场风能资源评估方法[1]计算湍流强度,在风力机叶片的一般假设模型下提出了一个新的扭转振动方程,根据双参数威布尔分布统计描述风速,并用标准差和平均值估计两个参数,得出了关于湍流强度的叶片扭转响应的计算式.计算得出在中等程度以上的湍流下,湍流强度值为0.25~0.35时扭转响应最大,对风能的利用及对风机的影响最大;对于更大的湍流强度值(>1.0),湍流将对风机造成破坏性影响.  相似文献   

10.
根据某1.5MW水平轴风力机的结构特征,建立风力机的有限元模型,基于高耸结构设计规范得到两种工况下风力机的等效静力风荷载.运用ANSYS软件分别计算风力机在两种等效风荷载下的拟静力响应,得到风力机各部件应力与位移的分布情况.结构的最大应力发生在塔架底部为67.3MPa,机舱的最大位移为0.41m.结果表明,风力机满足静力下的强度要求,为风力机的设计制造提供了理论依据.  相似文献   

11.
针对国内某厂生产的双吸泵,利用CFD软件对其内部流畅进行数值模拟,依据一元理论对叶轮的水力设计进行检查.发现影响泵效率的原因是叶轮进口较强的漩涡,在不改变原叶轮设计的基础上提出切割叶片进口边的优化方案.方案实施后,效率点比原设计向大流量方向偏移,最高效率提高了5.61%,基本达到了优化的目的.  相似文献   

12.
开关磁阻风力发电系统输出电压脉动抑制研究   总被引:2,自引:0,他引:2  
由于风能的波动性、间歇性和不规则性,其输出量受自然资源的属性(如风速)影响很大.为提高风力发电系统的电能质量,依据开关磁阻发电机双凸极结构特点和磁阻最小工作原理,结合小功率变风速发电系统实际工况,选用自励模式,设计SRG变速恒压风力发电系统.根据SRG周期性分时实现励磁和发电的工作特点,分析输出电压脉动原因,对输出电压进行闭环控制;并优化输出电容滤波器,有效抑制输出电压脉动.MATLAB的仿真实验表明:合理选择电压反馈调节器类型及参数实现输出电压闭环控制,综合输出电容滤波器优化控制,开关磁阻风力发电系统可以很好地实现变速输出,有效解决低风速发电问题,增加SRG风电系统的供电可靠性,提高智能电网中分布式新能源发电系统的电能质量.  相似文献   

13.
采用1.5MW的风力机叶片,通过Pro/E建模并缩放模型,在GAMBIT里划分网格,导入FLUENT进行计算.结果表明:截面翼型的上表面流速大于下表面流速,符合实际情况,缩放模型是可行的.为以后的模拟研究和使用提供了参考依据.  相似文献   

14.
旋转效应对风力机叶片升力性能影响的研究   总被引:1,自引:1,他引:0  
采用商业软件FLUEN6.2对NREL风力机就8m/s-15m/s风速范围进行了数值计算,对由于旋转导致叶片升力增大现象进行了分析,并将计算结果与NASA风洞试验结果进行了对比.计算结果表明风速〈10m/s时,叶片上的压力分布与试验结果吻合较好,只有r/R=0.47段有较大偏差,当风速〉10m/s时,二者的偏差也随之增大,但差别不是很大,除叶片根部区域以及偶尔在r/R=0.47区域二者存在差别外二者吻合较好.从计算得到的流线图可以看出,在叶片吸力面上有较大的分离和横向流动区域,可以证实由于旋转效应,在r/R=0.30和r/R=0.47的2个区域存在升力增大和失速延迟现象.  相似文献   

15.
S形刃球头立铣刀的数学模型   总被引:2,自引:0,他引:2  
论述了S形刃球头立铣刀螺旋角及诱导导程的物理意义,建立了螺旋角及诱导导程的数学模型.通过该模型,分别建立了柱面上、球面上和锥面上球头立铣刀的等导程螺旋线的数学模型.然后根据加工时前刀面的成形运动,分别计算了圆柱和圆锥球头立铣刀球头部分的刃底曲线数学模型.模型的建立对球头刀具的设计及加工提供了参考依据.  相似文献   

16.
视觉测量直升机高速旋转桨叶形变常采用基于圆形标记点的测量方法,但该方法中圆形标记点具有低曝光、小目标和投影不对称等特点,极易产生标记点漏检和圆心坐标误差的问题。为减小漏检、修正圆心坐标误差,提出了一种直升机桨叶图像中圆形标记点圆心检测及修正方法。首先,提取图像中局部极值中心的像素坐标,并依据阵列排布结构滤除干扰,获得所有圆形标记点极值中心的像素坐标;其次,以各极值中心的像素坐标为圆心,与相邻极值的最小距离为直径,建立圆形ROI (region of interest)区域,在ROI区域内并行分水岭变换和最小二乘法圆拟合得到圆心;再次,采用透视变换建立该图像与垂直相机光轴的同相位桨叶图像(正面图像)的投影映射关系,再采用LM (levenberg-marquardt)优化求解投影映射矩阵;最后,将该图像转换为正面图像进行圆心检测,再将该圆心坐标逆变换得到精确圆心坐标。实验结果表明,本文检测方法准确率和精度分别达98.89%和0.191 mm,已应用于直升机高速旋转桨叶运动轨迹和形变的高精度视觉测量。  相似文献   

17.
针对现有的直升机桨叶欠曝光图像中圆形标记点检测方法存在自适应能力不强、速度慢、精度不高的问题,提出了基于YOLOv3(you only look once)与分水岭的直升机桨叶欠曝光图像圆形标记点检测方法.首先,将采集的真实桨叶欠曝光图像中的圆形标记点进行标注后,制作成数据集,并训练YOLOv3网络;其次,用训练好的YOLOv3网络检测出圆形标记点区域;再次,改进传统分水岭标记提取方式,采用多线程技术并行在各圆形标记点区域内进行分水岭变换,得到圆形标记点边缘检测结果;最后,采用最小二乘圆拟合和奇异点去除法实现圆形标记点的精确定位.研究者通过对多幅欠曝光桨叶图像中圆形标记点进行检测实验,验证了该方法具有自适应能力强、速度快、精度高的优点,并已将其用于直升机桨叶欠曝光图像圆形标记点的检测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号