共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
传统的深度卷积神经网络结构复杂,参数量多.针对现有的轻量化卷积神经网络模型结构,提出一种改进的轻量化卷积神经网络BN-MobileNet.采用模型压缩的方法对原结构进行缩减,减少冗余参数,再对深度可分离卷积的结构进行改进,在relu非线性激活层后加入归一化层来对非线性激活层所输出的数据进行归一化处理.同时,使用全局平均... 相似文献
3.
近年来,大多数火灾自动报警系统都是通过检测感温、感烟和感光等传感器的方法进行检测,只能针对单一特征信息进行判断识别,受到外界空间、环境或人为因素的影响.卷积神经网络(CNN)以其高准确率的识别率在广泛应用成为一个活跃的研究课题.然而如何可靠、有效地解决火焰检测问题仍然是实践中一个具有挑战性的问题.本文提出了一种新的基于... 相似文献
4.
由于算力和内存的限制,目前的人体姿态估计网络难以广泛应用于移动设备、嵌入式平台.针对这个问题,本文以HRNet为基础框架,提出了一种轻量化的人体姿态估计网络X-HRNet,使用ResNeXt模块替换普通的Basic模块以减少网络的参数和计算复杂度.实验结果表明,所提出模型在COCO验证集上取得了78.2%的精度,比HRNet高1.9%,参数量下降了22.2M,计算量下降了27.3GFLOPs.与以往的轻量化人体姿态估计方法不同,所提出的X-HRNet是一种兼顾精度和轻量化的方法,在保持精度的同时有效减少了计算量和参数量,为嵌入式平台提出了一种新的轻量化人体姿态估计网络. 相似文献
5.
作为深度学习的一种有效算法,深度卷积网络已成功应用在处理图像、视频和音频等领域.通过建立一卷积神经网络模型并应用于网络入侵检测,选取的卷积核与数据进行卷积操作提取特征的局部相关性从而提高特征提取的准确度.采集到的网络数据通过多层"卷积层-下采样层"的处理对网络中正常行为和异常行为的特征进行深度刻画,最后通过多层感知机进行正确分类.KDD 99数据集上的实验表明,文中提出的卷积神经网络模型与经典BP神经网络、SVM算法等相比,有效提高了入侵检测识别的分类准确性. 相似文献
6.
针对已提出的很多烟雾检测方法中都是基于手工制作的特征或者使用原始图片直接作为神经网络的输入,减少了深度学习的鲁棒性。为解决这些问题,提出一种基于卷积神经网络(convolutional neural network,CNN)的烟雾检测方法。使用图片归一化方式消除光照的影响,利用烟雾颜色检测烟雾候选区域,CNN自动提取烟雾候选区域的特征,进行烟雾识别,根据分类结果得到报警信号。针对烟雾产生初期烟雾区域相对较小的问题,利用扩大候选区域的策略提高烟雾检测的及时性。由于训练数据少或不平衡引起的过度拟合,使用数据增强技术从原始数据集生成更多训练样本解决该问题。实验结果表明,该方法能有效地检测烟雾,且具有更高的准确率和更好的鲁棒性。 相似文献
7.
针对卷积神经网络在交通标志识别实时性不好,对设备硬件要求过高的缺点,提出了一种具有实时性,高精度的基于轻量型卷积神经网络的改进网络。一方面引入深度可分离卷积和激活函数Mish,加快网络的训练和识别速度,降低对硬件设备的要求;另一方面通过对网络架构及层次的改进,同时合理改变卷积核的大小和数目,加强图片特征的表达与传递。在BelgiumTSC交通标志数据集上的实验结果表明,改进后网络明显提高了网络训练速度,同时识别精度也略高于原网络,验证了改进方法的有效性。通过与其他模型相比,该模型能够更快速准确完成交通标志识别任务,验证了该方法的可行性。 相似文献
8.
9.
针对传统深度卷积神经网络分类精度不佳,参数量巨大,难以在内存受限的设备上进行部署的问题,本文提出了一种多尺度并行融合的轻量级卷积神经网络架构PL-Net。首先,将上层输出特征图分别送入两种不同尺度的深度可分离卷积层;然后对并行输出特征信息进行交叉融合,并加入残差学习,设计了一种并行轻量型模块PL-Module;同时,为了更好地提取特征信息,利用尺度降维卷积模块SR-Module来替换传统池化层;最后将上述两个模块相互堆叠构建轻量级网络。在CIFAR10、Caltech256和101_food数据集上进行训练与测试,结果表明:与同等规模的传统CNN、MobileNet-V2网络及SqueezeNet网络相比,PL-Net在减少网络参数的同时,提升了网络的分类精度,适合在内存受限的设备上进行部署。 相似文献
10.
近年来,研究人员们在卷积神经网络的基础上保证效率的条件下提出了轻量化卷积神经网络,其中SqueezeNet轻量化卷积神经网络在保证精度的前提下,压缩了参数,提高了整体效率。本文针对SqueezeNet网络中由于压缩参数,存在准确率不理想的问题,提出了引入残差网络,增加跳层结构和网络宽度的改进方法 VansNet,相较于AlexNet、ResNet和SqueezeNet三种卷积神经网络其计算量最小且参数量很小。实验结果表明,改进后的VansNet轻量化结构在略增加参数的前提下提高了图像分类的准确率和效率。 相似文献
11.
光纤面板是光电成像器件中不可缺少的元件,面板中暗影缺陷的自动检测对改进生产工艺、提高产品合格率具有重要的指导意义。在实际开发过程中,主要利用高速高分辨率面阵CCD传感器以及VC++可视化程序组成自动检测系统,优选的Canny算子检测边缘还存在缺陷,通过小波域去噪、自适应阈值的实现等改进了Canny算子,对改进的Canny算子检测的边缘进行了边缘连接、闭合曲线的获取、小区域连通、边缘细化等优化处理后,得到了清晰完整的暗影图像,并且降低了暗影缺陷标识的复杂度,该优化方法确实可行。 相似文献
12.
白雪 《西北民族学院学报》2014,(1):41-43
通过分析数字化校园建设的发展历程,发现云计算因其低成本,高效率的特性被越来越多的高校应用,成为未来数字化校园的发展趋势.文章提出了一个基于云计算的数字化校园建设构架. 相似文献
13.
14.
基于支持向量机的遥感图像分类研究 总被引:5,自引:0,他引:5
支持向量机(Support Vector Machine,SVM)是一种基于统计学习理论的新型机器学习算法.通过解算最优化问题,在高维特征空间中寻找最优分类超平面,从而解决复杂数据的分类及回归问题.将支持向量机理论应用到遥感图像分类的研究还处在初级阶段,传统分类算法应用于遥感图像分类存在运算速度慢、精度比较低和难以收敛等问题.从支持向量机基本理论出发,建立了一个基于支持向量机的遥感图像分类器.用遥感图像数据进行实验,并将结果与其它方法的结果进行了比较分析.实验结果表明,利用SVM进行遥感图像分类的精度明显优于神经网络算法和最大似然算法分类精度. 相似文献
15.
16.
合格水表运行一段时间后可能出现硬件故障,造成水费计量异常。为避免此问题,传统上采用机器学习方法(例如支持向量机)分析水表日常读数以判断水表是否出现故障,但该方法常因人工选择特征不当而导致检测性能不能满足实用要求。为解决该问题,本文利用卷积神经网络(CNN)卓越的特征提取能力,根据水表日常读数自动提取水表故障特征,在此基础上提出一种基于CNN的水表故障检测方法,并通过大量实验对检测模型进行了参数优化。对比实验结果表明,本文所提方法相比于支持向量机和集成学习方法,具备更高的检测性能,且检测精度满足实用需求。 相似文献
17.
利用OpenFiler设计,在VMware vSphere云计算平台中实现了iSCSI SAN,完成了只有在专有网络存储上才能做的iSCSI SAN配置.为虚拟机提供独立存储系统,并在Windows 7和Windows Server 2008环境中完成测试,对学习和实际构建iSCSI SAN有参考价值. 相似文献
18.
胃镜检查是发现胃息肉的主要方法。传统的人工检查方式存在准确率低,易漏诊、误诊的情况。本文提出了一种基于深度学习的YOLOv5-SE胃息肉检测网络。该网络在目标检测算法YOLOv5的基础上进行了改进,引入注意力机制,将SE Block加入到主干网络的最后一层,增强网络的特征提取能力。改进后的YOLOv5-SE胃息肉检测网络的平均精度均值(mAP)达到了94.5%,相比原网络提高了3.1%,推理速度达到67fps,在满足实时性要求下较好地完成了胃息肉检测的要求。YOLOv5-SE胃息肉检测网络具有在实时性、自动检测的精度和速度等方面有一定提升,对促进胃息肉的自动检测有重要意义。 相似文献
19.
大跨度曲线圆管类结构在工程上应用广泛,但该类结构存在线形获取效率低、整体线形难以保证等问题,因此提出一种基于激光点云的大跨度曲线圆管结构线形高效自动检测方法。利用三维激光扫描仪对结构全方位、快速的姿态获取,然后进行目标点云降噪、删除无关点等操作,最后采用编程算法对曲线圆管的中心线实现自动化批量提取。为验证中心线线形精度,赋予中心线合适半径值完成曲线圆管的重构,并将重构模型与点云进行三维对比分析。以某大跨度曲线圆管围护结构为分析对象,试验表明,由该方法逆向得到的大跨度曲线结构整体线形精度高、效率上大幅度提升,有良好的工程应用前景。 相似文献
20.
机械结构的损伤发展到一定程度,会对其功能产生严重影响,所以及早检测出损伤非常必要。针对机械结构在损伤发生时其内部能量分布会发生变化的情况,对加速度计测得的结构振动信号进行短时傅立叶变换,获得可以反映能量分布的时频谱图。使用脉冲耦合神经网络提取时频谱图的熵序列特征,很好地识别了结构的损伤。使用上述方法对简支梁的损伤进行了实验研究,验证了其有效性和实用性。 相似文献