首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Q Si  S Rabello  K Ingersent  J L Smith 《Nature》2001,413(6858):804-808
When a metal undergoes a continuous quantum phase transition, non-Fermi-liquid behaviour arises near the critical point. All the low-energy degrees of freedom induced by quantum criticality are usually assumed to be spatially extended, corresponding to long-wavelength fluctuations of the order parameter. But this picture has been contradicted by the results of recent experiments on a prototype system: heavy fermion metals at a zero-temperature magnetic transition. In particular, neutron scattering from CeCu6-x Aux has revealed anomalous dynamics at atomic length scales, leading to much debate as to the fate of the local moments in the quantum-critical regime. Here we report our theoretical finding of a locally critical quantum phase transition in a model of heavy fermions. The dynamics at the critical point are in agreement with experiment. We propose local criticality to be a phenomenon of general relevance to strongly correlated metals.  相似文献   

3.
4.
Hung CL  Zhang X  Gemelke N  Chin C 《Nature》2011,470(7333):236-239
The collective behaviour of a many-body system near a continuous phase transition is insensitive to the details of its microscopic physics; for example, thermodynamic observables follow generalized scaling laws near the phase transition. The Berezinskii-Kosterlitz-Thouless (BKT) phase transition in two-dimensional Bose gases presents a particularly interesting case because the marginal dimensionality and intrinsic scaling symmetry result in a broad fluctuation regime and an extended range of universal scaling behaviour. Studies of the BKT transition in cold atoms have stimulated great interest in recent years, but a clear demonstration of critical behaviour near the phase transition has remained elusive. Here we report in situ density and density-fluctuation measurements of two-dimensional Bose gases of caesium at different temperatures and interaction strengths, observing scale-invariant, universal behaviours. The extracted thermodynamic functions confirm the existence of a wide universal region near the BKT phase transition, and provide a sensitive test of the universality predicted by classical-field theory and quantum Monte Carlo calculations. Our experimental results provide evidence for growing density-density correlations in the fluctuation region, and call for further explorations of universal phenomena in classical and quantum critical physics.  相似文献   

5.
McKay D  White M  Pasienski M  DeMarco B 《Nature》2008,453(7191):76-79
Phase-slips control dissipation in many bosonic systems, determining the critical velocity of superfluid helium and the generation of resistance in thin superconducting wires. Technological interest has been largely motivated by applications involving nanoscale superconducting circuit elements, such as standards based on quantum phase-slip junctions. Although phase slips caused by thermal fluctuations at high temperatures are well understood, controversy remains over the role of phase slips in small-scale superconductors--in solids, problems such as uncontrolled noise sources and disorder complicate their study and application. Here we show that phase slips can lead to dissipation in a clean and well-characterized Bose-Hubbard system, by experimentally studying the transport of ultracold atoms trapped in an optical lattice. In contrast to previous work, we explore a low-velocity regime described by the three-dimensional Bose-Hubbard model that is unaffected by instabilities, and we measure the effect of temperature on the dissipation strength. The damping rate of atomic motion (the analogue of electrical resistance in a solid) in the confining parabolic potential is well fitted by a model that includes finite damping at zero temperature. The low-temperature behaviour is consistent with the theory of quantum tunnelling of phase slips, whereas at higher temperatures a crossover consistent with a transition to thermal activation of phase slips is evident. Motion-induced features reminiscent of vortices and vortex rings associated with phase slips are also observed in time-of-flight imaging. These results clarify the role of phase slips in superfluid systems. They may also be of relevance in understanding the source of metallic phases observed in thin films, or serve as a test bed for theories of bosonic dissipation based upon variants of the Bose-Hubbard model.  相似文献   

6.
Osterloh A  Amico L  Falci G  Fazio R 《Nature》2002,416(6881):608-610
Classical phase transitions occur when a physical system reaches a state below a critical temperature characterized by macroscopic order. Quantum phase transitions occur at absolute zero; they are induced by the change of an external parameter or coupling constant, and are driven by quantum fluctuations. Examples include transitions in quantum Hall systems, localization in Si-MOSFETs (metal oxide silicon field-effect transistors; ref. 4) and the superconductor-insulator transition in two-dimensional systems. Both classical and quantum critical points are governed by a diverging correlation length, although quantum systems possess additional correlations that do not have a classical counterpart. This phenomenon, known as entanglement, is the resource that enables quantum computation and communication. The role of entanglement at a phase transition is not captured by statistical mechanics-a complete classification of the critical many-body state requires the introduction of concepts from quantum information theory. Here we connect the theory of critical phenomena with quantum information by exploring the entangling resources of a system close to its quantum critical point. We demonstrate, for a class of one-dimensional magnetic systems, that entanglement shows scaling behaviour in the vicinity of the transition point.  相似文献   

7.
Quantum criticality is associated with a system composed of a nearly infinite number of interacting quantum degrees of freedom at zero temperature, and it implies that the system looks on average the same regardless of the time- and length scale on which it is observed. Electrons on the atomic scale do not exhibit such symmetry, which can only be generated as a collective phenomenon through the interactions between a large number of electrons. In materials with strong electron correlations a quantum phase transition at zero temperature can occur, and a quantum critical state has been predicted, which manifests itself through universal power-law behaviours of the response functions. Candidates have been found both in heavy-fermion systems and in the high-transition temperature (high-T(c)) copper oxide superconductors, but the reality and the physical nature of such a phase transition are still debated. Here we report a universal behaviour that is characteristic of the quantum critical region. We demonstrate that the experimentally measured phase angle agrees precisely with the exponent of the optical conductivity. This points towards a quantum phase transition of an unconventional kind in the high-T(c) superconductors.  相似文献   

8.
C Pfleiderer  S R Julian  G G Lonzarich 《Nature》2001,414(6862):427-430
A century of research on magnetic phenomena had led to the view that the normal state of itinerant-electron ferromagnets such as Fe, Ni and Co could be described in terms of the standard model of the metallic state or its extension known as the nearly ferromagnetic Fermi liquid theory. In recent years, however, a large body of observations has accumulated from various complex intermetallic systems that raises the possibility that this assumption might be wrong. Here we examine this issue by means of high-precision measurements of the electrical transport and magnetic properties of pure ferromagnets-in particular, MnSi-in which the Curie temperature is tuned towards absolute zero by the application of hydrostatic pressure. With this method, it is possible for us to study the normal state over an extraordinarily large range of temperature of up to five orders of magnitude above the Curie temperature. Our results using MnSi reveal a particularly striking combination of properties-most notably a T3/2 power law for the resistivity-showing clearly that the normal state of this itinerant-electron ferromagnet cannot be described in terms of the standard model of metals.  相似文献   

9.
利用溶胶一凝胶法制备了La0.67Sr0.18□0.15MnO3样品,并对其结构、磁性质和电输运性质进行了研究。x射线衍射研究表明,样品具有单相菱方六面体结构。磁性研究表明,样品存在铁磁一顺磁转变,居里温度约280K。电输运性质研究表明,在低温范围,样品电阻率的来源主要是电子与电子之间的散射,样品在高温范围符合非绝热近似下的小极化子导电行为。  相似文献   

10.
Kagawa F  Miyagawa K  Kanoda K 《Nature》2005,436(7050):534-537
Changing the interactions between particles in an ensemble--by varying the temperature or pressure, for example--can lead to phase transitions whose critical behaviour depends on the collective nature of the many-body system. Despite the diversity of ingredients, which include atoms, molecules, electrons and their spins, the collective behaviour can be grouped into several families (called 'universality classes') represented by canonical spin models. One kind of transition, the Mott transition, occurs when the repulsive Coulomb interaction between electrons is increased, causing wave-like electrons to behave as particles. In two dimensions, the attractive behaviour responsible for the superconductivity in high-transition temperature copper oxide and organic compounds appears near the Mott transition, but the universality class to which two-dimensional, repulsive electronic systems belongs remains unknown. Here we present an observation of the critical phenomena at the pressure-induced Mott transition in a quasi-two-dimensional organic conductor using conductance measurements as a probe. We find that the Mott transition in two dimensions is not consistent with known universality classes, as the observed collective behaviour has previously not been seen. This peculiarity must be involved in any emergent behaviour near the Mott transition in two dimensions.  相似文献   

11.
提出了纯金属电阻率的两个简化模型:一个统计模型,一个电子一声子耦合模型。由统计模型可得出:纯金属电阻率与声子浓度及声子平均动量的平方成正比。由电子-声子耦合模型得出:电子的散射几率不仅正比于声子数,而且正比于电子-声子的耦合强度。由这两个模型皆能得出纯金属电阻率在高温时与温度T成正比,低温时与T5成正比的结果。由电阻率—温度曲线的比较表明,两模型相当吻合。  相似文献   

12.
系统地研究了多晶La5/8-xPrxCa3/8MnO3(x=0,0.10,0.13,0.15)体系的磁性和电输运特性,并报道了这一体系的电阻率极小值行为.X射线粉末衍射测量表明,所有的样品都具有较好的单相结构;电输运和磁性测量结果表明,随掺杂量的增大,居里温度Tc和绝缘体-金属转变温度TMI都向低温区移动.在较低温度下电阻率表现出了极小值现象,而这一现象随外加磁场的增大逐渐受到抑制,对此现象从强电子-电子相互作用角度进行了分析讨论.在Tc和TMI转变温.度区域,样品表现出较大的磁电阻效应.样品在高温下的电输运行为可根据可变程跃迁机制得到很好的解释.  相似文献   

13.
Yamaguchi A  Kobayashi S  Ishimoto H  Kojima H 《Nature》2006,444(7121):909-912
The magnetic properties of (3)He in its various phases originate from the interactions among the nuclear spins. The spin-polarized 'ferromagnetic' superfluid (3)He A(1) phase (which forms below 3 mK between two transition temperatures, T(c1) and T(c2), in an external magnetic field) serves as a material in which theories of fundamental magnetic processes and macroscopic quantum spin phenomena may be tested. Conventionally, the superfluid component of the A(1) phase is understood to contain only the majority spin condensate, having energetically favoured paired spins directed along the external field and no minority spin condensate having paired spins in the opposite direction. Because of difficulties in satisfying both the ultralow temperature and high magnetic field required to produce a substantial phase space, there exist few studies of spin dynamics phenomena that could be used to test the conventional view of the A(1) phase. Here we develop a mechanical spin density detector that operates in the required regime, enabling us to perform measurements of spin relaxation in the A(1) phase as a function of temperature, pressure and magnetic field. Our mechanical spin detector is based in principle on the magnetic fountain effect; spin-polarized superfluid motion can be induced both magnetically and mechanically, and we demonstrate the feasibility of increasing spin polarization by a mechanical spin filtering process. In the high temperature range of the A(1) phase near T(c1), the measured spin relaxation time is long, as expected. Unexpectedly, the spin relaxation rate increases rapidly as the temperature is decreased towards T(c2). Our measurements, together with Leggett-Takagi theory, demonstrate that a minute presence of minority spin pairs is responsible for this unexpected spin relaxation behaviour. Thus, the long-held conventional view that the A(1) phase contains only the majority spin condensate is inadequate.  相似文献   

14.
Roch N  Florens S  Bouchiat V  Wernsdorfer W  Balestro F 《Nature》2008,453(7195):633-637
Quantum criticality is the intriguing possibility offered by the laws of quantum mechanics when the wave function of a many-particle physical system is forced to evolve continuously between two distinct, competing ground states. This phenomenon, often related to a zero-temperature magnetic phase transition, is believed to govern many of the fascinating properties of strongly correlated systems such as heavy-fermion compounds or high-temperature superconductors. In contrast to bulk materials with very complex electronic structures, artificial nanoscale devices could offer a new and simpler means of understanding quantum phase transitions. Here we demonstrate this possibility in a single-molecule quantum dot, where a gate voltage induces a crossing of two different types of electron spin state (singlet and triplet) at zero magnetic field. The quantum dot is operated in the Kondo regime, where the electron spin on the quantum dot is partially screened by metallic electrodes. This strong electronic coupling between the quantum dot and the metallic contacts provides the strong electron correlations necessary to observe quantum critical behaviour. The quantum magnetic phase transition between two different Kondo regimes is achieved by tuning gate voltages and is fundamentally different from previously observed Kondo transitions in semiconductor and nanotube quantum dots. Our work may offer new directions in terms of control and tunability for molecular spintronics.  相似文献   

15.
Balakirev FF  Betts JB  Migliori A  Ono S  Ando Y  Boebinger GS 《Nature》2003,424(6951):912-915
High-temperature superconductivity is achieved by doping copper oxide insulators with charge carriers. The density of carriers in conducting materials can be determined from measurements of the Hall voltage--the voltage transverse to the flow of the electrical current that is proportional to an applied magnetic field. In common metals, this proportionality (the Hall coefficient) is robustly temperature independent. This is in marked contrast to the behaviour seen in high-temperature superconductors when in the 'normal' (resistive) state; the departure from expected behaviour is a key signature of the unconventional nature of the normal state, the origin of which remains a central controversy in condensed matter physics. Here we report the evolution of the low-temperature Hall coefficient in the normal state as the carrier density is increased, from the onset of superconductivity and beyond (where superconductivity has been suppressed by a magnetic field). Surprisingly, the Hall coefficient does not vary monotonically with doping but rather exhibits a sharp change at the optimal doping level for superconductivity. This observation supports the idea that two competing ground states underlie the high-temperature superconducting phase.  相似文献   

16.
Synchronized oscillators are ubiquitous in nature, and synchronization plays a key part in various classical and quantum phenomena. Several experiments have shown that in thin superconducting films, disorder enforces the droplet-like electronic texture--superconducting islands immersed into a normal matrix--and that tuning disorder drives the system from superconducting to insulating behaviour. In the vicinity of the transition, a distinct state forms: a Cooper-pair insulator, with thermally activated conductivity. It results from synchronization of the phase of the superconducting order parameter at the islands across the whole system. Here we show that at a certain finite temperature, a Cooper--air insulator undergoes a transition to a superinsulating state with infinite resistance. We present experimental evidence of this transition in titanium nitride films and show that the superinsulating state is dual to the superconducting state: it is destroyed by a sufficiently strong critical magnetic field, and breaks down at some critical voltage that is analogous to the critical current in superconductors.  相似文献   

17.
Motoyama EM  Yu G  Vishik IM  Vajk OP  Mang PK  Greven M 《Nature》2007,445(7124):186-189
High-transition-temperature (high-T(c)) superconductivity develops near antiferromagnetic phases, and it is possible that magnetic excitations contribute to the superconducting pairing mechanism. To assess the role of antiferromagnetism, it is essential to understand the doping and temperature dependence of the two-dimensional antiferromagnetic spin correlations. The phase diagram is asymmetric with respect to electron and hole doping, and for the comparatively less-studied electron-doped materials, the antiferromagnetic phase extends much further with doping and appears to overlap with the superconducting phase. The archetypal electron-doped compound Nd2-xCexCuO4+/-delta (NCCO) shows bulk superconductivity above x approximately 0.13 (refs 3, 4), while evidence for antiferromagnetic order has been found up to x approximately 0.17 (refs 2, 5, 6). Here we report inelastic magnetic neutron-scattering measurements that point to the distinct possibility that genuine long-range antiferromagnetism and superconductivity do not coexist. The data reveal a magnetic quantum critical point where superconductivity first appears, consistent with an exotic quantum phase transition between the two phases. We also demonstrate that the pseudogap phenomenon in the electron-doped materials, which is associated with pronounced charge anomalies, arises from a build-up of spin correlations, in agreement with recent theoretical proposals.  相似文献   

18.
利用高压原位电阻率测量技术, 观察0~48.2 GPa内WSe2电阻率随压强的变化规律, 并测量了WSe2电阻率在不同压强下随温度的变化关系.  结果表明: WSe2电阻率在压力作用下的变化规律与杂质能级压致离化后的传导有关; 由于压致能隙闭合, WSe2在38.1 GPa时发生等结构的半导体性到金属性的相转变.  相似文献   

19.
Li Y  Balédent V  Yu G  Barišić N  Hradil K  Mole RA  Sidis Y  Steffens P  Zhao X  Bourges P  Greven M 《Nature》2010,468(7321):283-285
The elucidation of the pseudogap phenomenon of the high-transition-temperature (high-T(c)) copper oxides-a set of anomalous physical properties below the characteristic temperature T* and above T(c)-has been a major challenge in condensed matter physics for the past two decades. Following initial indications of broken time-reversal symmetry in photoemission experiments, recent polarized neutron diffraction work demonstrated the universal existence of an unusual magnetic order below T* (refs 3, 4). These findings have the profound implication that the pseudogap regime constitutes a genuine new phase of matter rather than a mere crossover phenomenon. They are furthermore consistent with a particular type of order involving circulating orbital currents, and with the notion that the phase diagram is controlled by a quantum critical point. Here we report inelastic neutron scattering results for HgBa(2)CuO(4+δ) that reveal a fundamental collective magnetic mode associated with the unusual order, and which further support this picture. The mode's intensity rises below the same temperature T* and its dispersion is weak, as expected for an Ising-like order parameter. Its energy of 52-56?meV renders it a new candidate for the hitherto unexplained ubiquitous electron-boson coupling features observed in spectroscopic studies.  相似文献   

20.
Bloch I  Hansch TW  Esslinger T 《Nature》2000,403(6766):166-170
The experimental realization of Bose-Einstein condensates of dilute gases has allowed investigations of fundamental concepts in quantum mechanics at ultra-low temperatures, such as wave-like behaviour and interference phenomena. The formation of an interference pattern depends fundamentally on the phase coherence of a system; the latter may be quantified by the spatial correlation function. Phase coherence over a long range is the essential factor underlying Bose-Einstein condensation and related macroscopic quantum phenomena, such as superconductivity and superfluidity. Here we report a direct measurement of the phase coherence properties of a weakly interacting Bose gas of rubidium atoms. Effectively, we create a double slit for magnetically trapped atoms using a radio wave field with two frequency components. The correlation function of the system is determined by evaluating the interference pattern of two matter waves originating from the spatially separated 'slit' regions of the trapped gas. Above the critical temperature for Bose-Einstein condensation, the correlation function shows a rapid gaussian decay, as expected for a thermal gas. Below the critical temperature, the correlation function has a different shape: a slow decay towards a plateau is observed, indicating the long-range phase coherence of the condensate fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号