首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对不同强度指标的混凝土试块进行抗压试验,应用声发射及其定位技术对抗压试验全过程进行同步监测,分析混凝土受载破坏过程中声发射频率特征参数与混凝土强度指标的关系,研究混凝土受载破坏过程中内部裂纹的三维空间演化规律。研究结果表明:混凝土强度指标影响混凝土声发射信号频率特征参数。结合荷载-位移曲线对声发射振铃计数率和能率进行分析,发现C10和C20混凝土(低强度混凝土)声发射信号主要集中于弹性阶段初期和中期;C30和C40混凝土(中等强度混凝土)声发射信号处于受压全过程,声发射活跃期处于极限荷载处。通过对混凝土声发射事件进行空间三维定位,从微观上探明受载混凝土裂纹的萌生、发展和贯通的演化规律,对受载混凝土内部结构的变化有了直观的认识。  相似文献   

2.
本文通过对两种不同岩石试样进行了单轴载荷破坏过程中声发射特性试验,得到了岩石全应力应变破坏过程中,声发射事件时间序列、事件累计数时间序列等声发射特性,分析了岩样损伤破裂不同阶段与声发射参数的内在联系与特征规律,研究表明,声发射信息反映岩石内部的损伤破坏情况,与其内部原生裂隙的压密及新裂隙的产生、扩展、贯通等演化过程密切相关,通过声发射事件数参数拟合出的理论应力应变曲线能够合理地反映岩石实际的应力应变和损伤演化特性,对预测预报岩石破坏失效的过程具有有着极其重要的理论价值和实际意义。  相似文献   

3.
通过单轴加载条件下岩石破坏声发射实验,分析了岩石在受载过程中破坏单元的演化规律,对岩石破坏过程中的逾渗特征进行了探讨.分析结果表明:声发射定位事件反映了岩石内部微裂纹产生、扩展的演化过程,基于声发射定位事件对岩石内部破坏单元进行划分,能够反映破坏单元从无序分布向有序集中的自组织演化过程.岩石失稳破坏前,破坏集团数目与破坏集团规模——数目的负幂指数均出现增长变缓的趋势,反映了破坏单元的大面积贯通过程,岩石由稳定的破裂阶段转变为非稳定的破裂阶段.在破坏单元达到一定概率时应变开始突发式增长.基于声发射定位事件对破坏单元进行划分,从物理实验的角度研究岩石逾渗问题,具有实际应用价值.  相似文献   

4.
对自密实混凝土受弯梁的受力性能进行试验研究,通过试验得出自密实混凝土受弯梁的开裂荷载、抗弯承载力、抗剪承载力、构件延性和破坏形态,并与普通混凝土梁进行对比分析。试验结果表明:自密实混凝土梁在竖向荷载作用下,承载能力与破坏特征和普通混凝土梁相近,自密实混凝土梁具有良好的抗弯性能,阻裂性能和变形性能,其承载能力与普通混凝土相比有所提高。  相似文献   

5.
以新疆地区沙漠砂作为细骨料部分替代工程用砂,并在混凝土中掺入适量玄武岩纤维,制作了9根不同剪跨比、玄武岩纤维掺量和配箍率的玄武岩纤维高强沙漠砂混凝土梁,通过两点对称加载进行受剪破坏试验。基于声发射技术与分形理论对受剪梁损伤演化过程进行研究,定量分析了受剪梁损伤演化与不同变量因素间的规律。研究结果表明:声发射累计能量的增长随梁的破坏过程呈指数趋势,能量参数及梁表面裂缝分形维数随荷载水平的增大而增大,最大分形维数达到1.206 8。在相同荷载水平下,当剪跨比为1.5、纤维体积掺量为0.4%时,试验梁损伤最小。建立了基于声发射参数和试验梁表面裂缝分形维数的受剪损伤模型。  相似文献   

6.
冲击(或爆炸)和火灾往往伴随发生并威胁工程结构的使用安全,高温和高应变率对钢筋混凝土(RC)结构的耦合作用引起了研究者的广泛关注.本文结合混凝土细观非均质性,考虑钢筋和混凝土材料的应变率增强效应及高温退化效应,同时考虑钢筋与混凝土间的黏结-滑移行为,建立了RC梁抗火抗冲击性能研究的细观数值模型.与室温下落锤冲击试验结果对比,验证了细观数值模型的合理性,进而比较分析了高温下及高温后RC梁在冲击作用下的力学响应,揭示了RC梁的破坏模式与失效机制.结果表明:建立的细观数值模型能够有效描述RC梁在高温和冲击荷载联合作用下的破坏模式;相同受火时间,高温下RC梁表现出比高温后RC梁更为严重的破坏,且随受火时间的增加,差异逐渐扩大.  相似文献   

7.
由于爆炸荷载具有峰值压强大、作用时间短的特点,钢筋混凝土梁在爆炸荷载作用下的动力响应较为复杂。为了深入研究钢筋混凝土梁的抗爆性能,应用瞬态动力分析软件LS-DYNA建立了钢筋混凝土梁的三维有限元模型。数值模型中钢筋混凝土采用分离式模型,并且考虑了钢筋和混凝土材料的应变率效应。对已有文献中的钢筋混凝土梁承受爆炸荷载的试验进行了数值模拟,并将模拟结果与试验结果进行了对比分析,结果表明所采用的数值模型可以较好地模拟爆炸荷载作用下钢筋混凝土梁的动力响应。在此基础上,研究了钢筋混凝土梁在不同爆炸荷载作用下的破坏模式。分析结果表明,随着峰值压力的增加,钢筋混凝土梁的破坏模式由弯曲破坏转变为剪切破坏。  相似文献   

8.
混凝土随机损伤本构关系研究新进展   总被引:16,自引:1,他引:16  
提出了一类混凝土细观损伤物理模型,用于解释高性能混凝土在本构层次上的细观损伤演化特征,建立了混凝土单轴受拉,单轴受压与双轴拉压组合条件下的随机损伤本构关系模型。利用混凝土单轴受拉破坏全过程的声发射实验数据,引入随机建模理论,确立了细观损伤单元的极限破坏应变随机场分布参数,通过与一批高性能混凝土本构关系试验数据相比较,初步证实了采用随机损伤本构关系反映混凝土受力破坏机理的可行性。  相似文献   

9.
通过对不同配筋率和不同壁厚钢管混凝土(CFST)柱进行单轴压缩声发射试验,对比分析了各试件破坏全过程的声发射信号特征.试验结果表明:试件的整个破坏过程可分为弹性段、弹塑性段、强化段和失效段四个阶段,声发射特征参数变化与试件破坏过程表现出较好的对应关系.声发射累积能量和累积撞击数均随荷载的增加而稳步增加;b值经历了缓慢上升、平稳波动、迅速下降的变化,反映了试件内部裂纹的逐步扩展情况;通过对声发射RA值、AF值分析可知,钢管混凝土柱的破坏过程既产生拉伸型裂纹又产生剪切型裂纹,随着荷载的增大,破坏中剪切型裂纹所占比例逐渐增多.研究表明声发射技术可以有效监测轴压下钢管混凝土柱的损伤状态.  相似文献   

10.
为研究钢筋混凝土梁在不同冲击速度下的动态变形规律,利用落锤冲击试验装置和二维数字图像相关系统,对12根钢筋混凝土梁的冲击力时程、平均跨中位移变化过程、跨中钢筋的平均应变时程以及裂缝的形成与扩展过程进行分析,重点讨论了梁的变形破坏模式及动态响应过程。研究发现:不同于静态三点弯曲试验的弯曲型破坏,钢筋混凝土梁的动态破坏形态主要表现为弯剪型破坏;冲击力峰值明显大于静态加载的承载力峰值,在恒定冲击质量的条件下与冲击高度正相关;钢筋混凝土梁的位移响应过程明显滞后于冲击力的响应时程,挠曲变形所持续的时长约为冲击力作用时长的40~60倍,位移响应表现出明显的滞后性;钢筋是否进入屈服阶段以及维持时长显著影响梁的最大位移以及残余位移。  相似文献   

11.
利用PXWAE型声发射系统进行了四点弯曲试验条件下页岩的声发射试验研究,试验中记录了岩样所受的最大弯曲应力、弯曲应变、声发射事件数、声发射能量等多个参数。研究发现,垂直页岩层理施加荷载时,在四点弯曲试验条件下其凯塞效应是存在的,凯塞点可以直接通过应力与累计声发射事件数曲线得出;但受自身水平层理结构及局部破坏的影响,应变在受载过程中会发生松弛现象,不易直接由应变-声发射试验曲线判断出岩石的凯塞点,必须结合其它试验数据以及岩样的最终破坏形态综合判断。弯曲应力状态下岩石的声发射特性研究对于利用声发射技术进行矿区顶板或隔层的稳定性监测具有一定的工程指导意义。  相似文献   

12.
为了分析采用传统灰色理论对声发射事件数建立声发射灰色模型GM(1,1)的预测值相较于试验值较大、预测精度不高等问题,根据再生粗骨料取代率为30%的再生混凝土梁在受弯破坏过程中的声发射现象,通过引入折减系数提高预测值的精度,并给出了折减系数在梁破坏全过程的表达式。通过和试验相验证,比较GM(1,1)灰色模型预测值与试验值,最终结果表明:折减系数与时间呈现较好的非线性关系,在起点处与终点处分别为折减系数的0. 5倍和3倍。根据上述特性得到修正后的灰色模型,其精度较传统模型有了很大的提高,利用该模型对材料受力过程中的声发射参数进行分析,进而实现对再生混凝土梁受弯破坏的判别及预测,对于今后预测材料损伤问题提供了参考。  相似文献   

13.
全级配混凝土梁动强度提高机理研究   总被引:1,自引:0,他引:1  
基于细观力学方法对全级配混凝土梁的动强度提高机理进行研究.假定混凝土由骨料、砂浆和界面三相材料组成,按全级配混凝土实际配比生成随机混凝土骨料模型.采用塑性损伤模型并考虑材料的应变软化,利用全级配混凝土梁的静弯拉(破坏)试验标定骨料、砂浆和界面的参数.在此基础上对冲击荷载下全级配混凝土梁的动弯拉破坏过程进行数值模拟,重点讨论惯性效应和应变率效应对混凝土材料强度增强因子的影响.研究结果表明:(a)当应变率小于8s-1时,材料惯性对梁的极限荷载影响可以忽略不计;当应变率大于8s-1时,材料惯性对全级配混凝土强度的动力增强因子(SDIF)影响增大.(b)当应变率小于20s-1时,率效应对SDIF影响较大,在高应变率区SDIF主要受材料惯性的影响.此外,探讨了初始缺陷(损伤)对全级配混凝土梁破坏荷载的影响.  相似文献   

14.
混凝土梁破坏过程中细部机理复杂,破坏源释放的声发射信号掺杂了多种破坏模式下的声发射信号。为方便声发射探伤的工程应用,需要对混合的声发射信号进行筛分,并最终将筛分归类的声发射信号与破坏模式相对应。利用SAEU2S声发射信号采集仪,采集混凝土试验梁在集中荷载作用下的全过程声发射信号,并通过设定开裂弯矩,提取正常使用阶段的声发射信号进行分析。通过两个基本假设,采用循环试算的方法,对声发射信号进行归类。结果表明:持续时间、能量、振铃计数等参数之间具有显著的相关性,能够相互替代。用持续时间对相关性显著的信号进行筛分,以持续时间为主要滤值,振铃计数、能量为次要滤值滤除不相关的信号,最终按照分布特征的不同将正常使用阶段的声发射信号分为14种类型,并给出了相关的频谱分析。滤除的信号在总量中约占5.3%的比例。研究结论有助于进一步进行分析研究声发射信号与损伤机理的对应关系,为实际工程中的损伤预警提供参考。  相似文献   

15.
声发射能量累积与煤岩损伤演化关系初探   总被引:1,自引:0,他引:1  
为了寻求煤及岩石在受载破坏过程中能量积累与应力应变之间的关系,分别对煤矿的煤和泥岩进行了单轴加载及声发射试验,得到了煤岩试样单轴加载试验过程中声发射能量累积、应力与应变之间的关系曲线。利用损伤力学基本原理和热力学定律,理论推导了煤岩损伤演化方程,进而得到损伤与声发射能量累积关系曲线,通过拟合损伤与声发射能量累积关系曲线初步推导得到了声发射能量累积与应力应变的理论关系,并通过试验结果验证了能量累积与应力应变关系。  相似文献   

16.
为研究火灾下钢-混凝土组合楼盖的声发射特性,利用声发射采集仪对火灾下长跨跨中布置次梁的足尺钢-混凝土组合楼盖进行监测。火灾模拟环境为ISO 834标准升温曲线,通过对钢-混凝土组合楼盖的板角、周边、跨中等关键位置处的声发射数据进行滤波分析,研究典型的声发射特征参数(计数、累计计数、幅值和能量),并结合试验破坏的宏观现象,探讨了火灾下钢-混凝土组合楼盖的传力机理及与声发射参数特征的关联。研究结果表明:火灾作用下钢-混凝土组合楼盖的声发射参数随截面温度的非线性变化表现出不同的特征,且与混凝土板面上裂缝开展的不同阶段相吻合,这与材料和结构的力学行为密切相关;试验过程中,声发射源信号在升温初期最为活跃,这与声发射信号中计数(振铃)和累计计数曲线的转折点特征吻合,可以用来反映裂缝开展的过程、分布区域和密集程度;声发射事件在空间位置上的分布特征变化是结构失稳和内部损伤产生的重要前兆,声发射信号本身的强弱(幅值、能量等参数)需特别关注;降温时,组合结构中钢梁、混凝土板间热膨胀系数的差异使得两者之间会有错动产生,直接导致该阶段的声发射信号仍然较为活跃,建议今后建立火灾下结构倒塌的声发射预警系统时予以关注。  相似文献   

17.
断续节理岩石破坏过程数值模拟研究   总被引:5,自引:0,他引:5  
采用岩石破裂过程分析RFPA^2D系统,通过对岩石断续节理在压剪荷载作用下的声发射和位移特性进行数值分析,研究岩石断续节理的破坏过程。数值模拟显示了试件的破坏过程、试件破坏所表现的声发射特征以及不同节理角对岩石破坏过程的影响。研究表明,岩石断续节理破坏过程具有几个明显的不同阶段,节理的倾角对破坏过程具有明显的影响。  相似文献   

18.
为了得到钢筋混凝土梁在弯曲破坏时声发射能量特征,对钢筋混凝土梁进行了弯曲破坏实验,捕捉实时能量特征。加载方式分为直接加载至破坏和分段加载至破坏两种方式。通过分析捕获的实时声发射信号能量信息以及整个加载阶段钢筋混凝土梁的能量释放特征,对钢筋混凝土梁的损伤断裂进行了预示。加载之前进行了断铅实验,进行了能量辅助定位,并获得了较好的精度。  相似文献   

19.
通过研究3组普通混凝土轴心受压试件,以不同粗骨料最大粒径作为变量,研究其应力-应变曲线特征及损伤破坏特征.利用声发射技术,研究不同粗骨料粒径普通混凝土的声发射特性,从声发射波速、能量参数、空间定位分析、损伤演化规律等角度综合评价材料特性.结果表明:混凝土的强度指标及变形性能可通过应力-应变全阶段曲线较好地反映,随粗骨料粒径增大,强度呈下降趋势,但骨料间的咬合作用明显增强.声发射波速受材料的密实程度、骨料粒径尺寸影响较大,存在随粗骨料粒径增大、波速下降的趋势.从能量角度分析破坏的全过程,应力水平-累计能量曲线4个阶段特征分明,将事件数引入材料损伤本构方程建立不同粗骨料粒径下的损伤演化模型,对实时、定量评价材料损伤程度具有较高精度.  相似文献   

20.
针对陶瓷材料在受载破坏过程中会产生大量的声发射信号的问题,应用声发射(AE)研究了95%氧化铝(Al2O3)陶瓷和15%氧化锆增韧氧化铝(ZTA)陶瓷压缩加载下的破坏过程. 通过时域抽取快速傅里叶变换(DIT-FFT)技术给出了陶瓷破坏过程的频谱图. 实验分析了两种陶瓷的声发射波形图、频谱图、撞击数和信号幅值,研究结果表明,声发射方法可以更直观地描述增韧效果,颗粒增韧陶瓷断裂时产生的声发射信号具有更高的幅值和更低的频率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号