共查询到20条相似文献,搜索用时 15 毫秒
1.
Marie Bessec 《Journal of forecasting》2013,32(6):500-511
In recent years, factor models have received increasing attention from both econometricians and practitioners in the forecasting of macroeconomic variables. In this context, Bai and Ng (Journal of Econometrics 2008; 146 : 304–317) find an improvement in selecting indicators according to the forecast variable prior to factor estimation (targeted predictors). In particular, they propose using the LARS‐EN algorithm to remove irrelevant predictors. In this paper, we adapt the Bai and Ng procedure to a setup in which data releases are delayed and staggered. In the pre‐selection step, we replace actual data with estimates obtained on the basis of past information, where the structure of the available information replicates the one a forecaster would face in real time. We estimate on the reduced dataset the dynamic factor model of Giannone et al. (Journal of Monetary Economics 2008; 55 : 665–676) and Doz et al. (Journal of Econometrics 2011; 164 : 188–205), which is particularly suitable for the very short‐term forecast of GDP. A pseudo real‐time evaluation on French data shows the potential of our approach. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
2.
Jack Fosten 《Journal of forecasting》2017,36(2):207-216
This paper proposes new methods for ‘targeting’ factors estimated from a big dataset. We suggest that forecasts of economic variables can be improved by tuning factor estimates: (i) so that they are both more relevant for a specific target variable; and (ii) so that variables with considerable idiosyncratic noise are down‐weighted prior to factor estimation. Existing targeted factor methodologies are limited to estimating the factors with only one of these two objectives in mind. We therefore combine these ideas by providing new weighted principal components analysis (PCA) procedures and a targeted generalized PCA (TGPCA) procedure. These methods offer a flexible combination of both types of targeting that is new to the literature. We illustrate this empirically by forecasting a range of US macroeconomic variables, finding that our combined approach yields important improvements over competing methods, consistently surviving elimination in the model confidence set procedure. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
3.
Paul R. Steffens 《Journal of forecasting》2001,20(1):63-77
Forecasting category or industry sales is a vital component of a company's planning and control activities. Sales for most mature durable product categories are dominated by replacement purchases. Previous sales models which explicitly incorporate a component of sales due to replacement assume there is an age distribution for replacements of existing units which remains constant over time. However, there is evidence that changes in factors such as product reliability/durability, price, repair costs, scrapping values, styling and economic conditions will result in changes in the mean replacement age of units. This paper develops a model for such time‐varying replacement behaviour and empirically tests it in the Australian automotive industry. Both longitudinal census data and the empirical analysis of the replacement sales model confirm that there has been a substantial increase in the average aggregate replacement age for motor vehicles over the past 20 years. Further, much of this variation could be explained by real price increases and a linear temporal trend. Consequently, the time‐varying model significantly outperformed previous models both in terms of fitting and forecasting the sales data. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
4.
Bruno Cara Giovannetti 《Journal of forecasting》2013,32(1):32-40
Using factors in forecasting exercises reduces the dimensionality of the covariates set and, therefore, allows the forecaster to explore possible nonlinearities in the model. For an American macroeconomic dataset, I present evidence that the employment of nonlinear estimation methods can improve the out‐of‐sample forecasting accuracy for some macroeconomic variables, such as industrial production, employment, and Fed fund rate. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
5.
Longevity risk has become one of the major risks facing the insurance and pensions markets globally. The trade in longevity risk is underpinned by accurate forecasting of mortality rates. Using techniques from macroeconomic forecasting we propose a dynamic factor model of mortality that fits and forecasts age‐specific mortality rates parsimoniously. We compare the forecasting quality of this model against the Lee–Carter model and its variants. Our results show the dynamic factor model generally provides superior forecasts when applied to international mortality data. We also show that existing multifactorial models have superior fit but their forecasting performance worsens as more factors are added. The dynamic factor approach used here can potentially be further improved upon by applying an appropriate stopping rule for the number of static and dynamic factors. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
6.
Mu‐Chun Wang 《Journal of forecasting》2009,28(2):167-182
In this paper, we put dynamic stochastic general equilibrium DSGE forecasts in competition with factor forecasts. We focus on these two models since they represent nicely the two opposing forecasting philosophies. The DSGE model on the one hand has a strong theoretical economic background; the factor model on the other hand is mainly data‐driven. We show that incorporating a large information set using factor analysis can indeed improve the short‐horizon predictive ability, as claimed by many researchers. The micro‐founded DSGE model can provide reasonable forecasts for US inflation, especially with growing forecast horizons. To a certain extent, our results are consistent with the prevailing view that simple time series models should be used in short‐horizon forecasting and structural models should be used in long‐horizon forecasting. Our paper compares both state‐of‐the‐art data‐driven and theory‐based modelling in a rigorous manner. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
7.
This paper uses a meta‐analysis to survey existing factor forecast applications for output and inflation and assesses what causes large factor models to perform better or more poorly at forecasting than other models. Our results suggest that factor models tend to outperform small models, whereas factor forecasts are slightly worse than pooled forecasts. Factor models deliver better predictions for US variables than for UK variables, for US output than for euro‐area output and for euro‐area inflation than for US inflation. The size of the dataset from which factors are extracted positively affects the relative factor forecast performance, whereas pre‐selecting the variables included in the dataset did not improve factor forecasts in the past. Finally, the factor estimation technique may matter as well. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
8.
Standard measures of prices are often contaminated by transitory shocks. This has prompted economists to suggest the use of measures of underlying inflation to formulate monetary policy and assist in forecasting observed inflation. Recent work has concentrated on modelling large data sets using factor models. In this paper we estimate factors from data sets of disaggregated price indices for European countries. We then assess the forecasting ability of these factor estimates against other measures of underlying inflation built from more traditional methods. The power to forecast headline inflation over horizons of 12 to 18 months is adopted as a valid criterion to assess forecasting. Empirical results for the five largest euro area countries, as well as for the euro area itself, are presented. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
9.
Jamal R. M. Ameen 《Journal of forecasting》1992,11(4):309-324
A complete dynamic model is introduced within the Bayesian framework. This includes the dynamic linear model and the normal discount Bayesian model as special cases and extends to some well-known models with nonlinear predictors. A number of practically important models are formulated and simple recurrence formulas, similar to those of Kalman, are used in the sequential estimation of the parameters. Finally, a number of practical examples and applications are given. 相似文献
10.
Harri Ponka 《Journal of forecasting》2017,36(5):469-482
We study the role of credit in forecasting US recession periods with probit models. We employ both classical recession predictors and common factors based on a large panel of financial and macroeconomic variables as control variables. Our findings suggest that a number of credit variables are useful predictors of US recessions over and above the control variables both in and out of sample. In particular, the excess bond premium, capturing the cyclical changes in the relationship between default risk and credit spreads, is found to be a powerful predictor of recession periods. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
11.
A large proportion of the world telecommunications market can be characterized as supply restricted. In ITU (1999) official waiting lists numbered about 50 million worldwide with an average waiting time of two years. More than 100 countries had not eliminated the waiting list for telephone connections and hence a supply restricted market prevailed in all of these countries. Only about 25 countries have succeeded in eradicating their waiting list for basic telephone service. In terms of the pattern of diffusion, the subscriber's flow from waiting applicants to adopters is controlled by supply restrictions adding an important dimension that needs to be addressed when modeling and forecasting demand. An empirical analysis of the diffusion of main telephones in 46 supply‐restricted countries is presented to demonstrate the usefulness of a three‐stage Bass model that has been proposed to capture the dynamics of supply restrictions. We also compare the forecasting ability of different approaches to estimation when panel data are available. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
12.
This paper presents a new forecasting approach straddling the conventional methods applied to the Italian industrial production index. Specifically, the proposed method treats factor models and bridge models as complementary ingredients feeding a unique model specification. We document that the proposed approach improves upon traditional bridge models by making efficient use of the information conveyed by a large amount of survey data on manufacturing activity. Different factor algorithms are compared and, under the provision that a large estimation window is used, partial least squares outperform principal component‐based alternatives. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
António Rua 《Journal of forecasting》2011,30(7):666-678
It has been acknowledged that wavelets can constitute a useful tool for forecasting in economics. Through a wavelet multi‐resolution analysis, a time series can be decomposed into different timescale components and a model can be fitted to each component to improve the forecast accuracy of the series as a whole. Up to now, the literature on forecasting with wavelets has mainly focused on univariate modelling. On the other hand, in a context of growing data availability, a line of research has emerged on forecasting with large datasets. In particular, the use of factor‐augmented models have become quite widespread in the literature and among practitioners. The aim of this paper is to bridge the two strands of the literature. A wavelet approach for factor‐augmented forecasting is proposed and put to test for forecasting GDP growth for the major euro area countries. The results show that the forecasting performance is enhanced when wavelets and factor‐augmented models are used together. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
14.
We use state space methods to estimate a large dynamic factor model for the Norwegian economy involving 93 variables for 1978Q2–2005Q4. The model is used to obtain forecasts for 22 key variables that can be derived from the original variables by aggregation. To investigate the potential gain in using such a large information set, we compare the forecasting properties of the dynamic factor model with those of univariate benchmark models. We find that there is an overall gain in using the dynamic factor model, but that the gain is notable only for a few of the key variables. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
15.
Christian Schumacher 《Journal of forecasting》2007,26(4):271-302
This paper discusses the forecasting performance of alternative factor models based on a large panel of quarterly time series for the German economy. One model extracts factors by static principal components analysis; the second model is based on dynamic principal components obtained using frequency domain methods; the third model is based on subspace algorithms for state‐space models. Out‐of‐sample forecasts show that the forecast errors of the factor models are on average smaller than the errors of a simple autoregressive benchmark model. Among the factor models, the dynamic principal component model and the subspace factor model outperform the static factor model in most cases in terms of mean‐squared forecast error. However, the forecast performance depends crucially on the choice of appropriate information criteria for the auxiliary parameters of the models. In the case of misspecification, rankings of forecast performance can change severely. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
16.
We introduce an approximate dynamic factor model for modeling and forecasting large panels of realized volatilities. Since the model is estimated by means of principal components and low‐dimensional maximum likelihood, it does not suffer from the curse of dimensionality. We apply the model to a panel of 90 daily realized volatilities pertaining to S&P 100 from January 2001 to December 2008. Results show that our model is able to capture the stylized facts of panels of volatilities (comovements, clustering, long memory, dynamic volatility, skewness and heavy tails), and that it performs fairly well in forecasting, in particular in periods of turmoil, in which it outperforms standard univariate benchmarks. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
17.
A short‐term mixed‐frequency model is proposed to estimate and forecast Italian economic activity fortnightly. We introduce a dynamic one‐factor model with three frequencies (quarterly, monthly, and fortnightly) by selecting indicators that show significant coincident and leading properties and are representative of both demand and supply. We conduct an out‐of‐sample forecasting exercise and compare the prediction errors of our model with those of alternative models that do not include fortnightly indicators. We find that high‐frequency indicators significantly improve the real‐time forecasts of Italian gross domestic product (GDP); this result suggests that models exploiting the information available at different lags and frequencies provide forecasting gains beyond those based on monthly variables alone. Moreover, the model provides a new fortnightly indicator of GDP, consistent with the official quarterly series. 相似文献
18.
This paper addresses the issue of forecasting term structure. We provide a unified state‐space modeling framework that encompasses different existing discrete‐time yield curve models. Within such a framework we analyze the impact of two modeling choices, namely the imposition of no‐arbitrage restrictions and the size of the information set used to extract factors, on forecasting performance. Using US yield curve data, we find that both no‐arbitrage and large information sets help in forecasting but no model uniformly dominates the other. No‐arbitrage models are more useful at shorter horizons for shorter maturities. Large information sets are more useful at longer horizons and longer maturities. We also find evidence for a significant feedback from yield curve models to macroeconomic variables that could be exploited for macroeconomic forecasting. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
19.
In this paper we consider a novel procedure to forecasting the US zero coupon bond yields for a continuum of maturities by using the methodology of nonparametric functional data analysis (NP‐FDA). We interpret the US yields as curves since the term structure of interest rates defines a relation between the yield of a bond and its maturity. Within the NP‐FDA approach, each curve is viewed as a functional random variable and the dynamics present in the sample are modeled without imposing any parametric structure. In order to evaluate forecast the performance of the proposed estimator, we consider forecast horizons h = 1,3,6,12… months and the results are compared with widely known benchmark models. Our estimates with NP‐FDA present predictive performance superior to its competitors in many situations considered, especially for short‐term maturities. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
20.
We present a mixed‐frequency model for daily forecasts of euro area inflation. The model combines a monthly index of core inflation with daily data from financial markets; estimates are carried out with the MIDAS regression approach. The forecasting ability of the model in real time is compared with that of standard VARs and of daily quotes of economic derivatives on euro area inflation. We find that the inclusion of daily variables helps to reduce forecast errors with respect to models that consider only monthly variables. The mixed‐frequency model also displays superior predictive performance with respect to forecasts solely based on economic derivatives. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献