首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
生质柴油为重要之可再生能源。本文研究改善液相触媒制程,以降低甲醇与三酸甘油酯间界面阻力,以提生反应速率。实验结果发现,在批式制程中,提高搅拌速率可提升反应速率,然因工厂实际操作恐有困难。以相转移触媒可达增加反应速率与产率效果,但需注意选用之相转移触媒不可在强碱下被破坏。使用共溶剂THF可促进反应速率与产率,为一可行的选择。而连续制程较批式制程有较好的效率。  相似文献   

2.
台湾如果加入WT0,休耕农地可转作能源作物.然而,如未来大量推广应用生质能源,台湾种植土地面积不足之问题仍待解决.而东南亚之印度尼西亚,面积辽阔且几近天然种植之棕榈树或未来计划栽种瘢疯树(Jatropha curcas)等能源作物,也是我们除了废食用油之外,另一种生质柴油或原料来源之选择.台湾目前自产生质柴油价格仍相当高,无法与化石柴油竞争,但为降低石油危机、环境冲击,推广可取代化石能源,也同时解决空污及二氧化碳减量问题的生质柴油,为各国环保署、能源主管单位、农政单位的主要推广选项之一.研究除在实验室完成制备生质柴油制程参数之建立外,并规划建立一座产能10万公升/年之生质柴油教学实验工厂,其中也包含甲醇回收及甘油纯化制程,预计年底完工.  相似文献   

3.
再生能源为当前各国致力发展之替代能源,旨在建立模型描述能源作物与生质柴油之供给者与需求者行为,观察政策对要素及产量供需之影响,可发现提高种植能源作物之单位面积补贴,会将使其种植面积及产出增加;提高生质柴油单位产量补贴,将增加能源作物需求及生质柴油供给,由于上述分析未考虑市场间之影响,可视为政策之短期效果.接着利用市场供需均衡原则,分别推导两个市场之均衡价格,进而了解政策对均衡价格之影响及政策变量间之相关性,发现提高能源作物或生质柴油补贴,将分别使其均衡价格下降;然而生质柴油补贴对能源作物之均衡价格则为正向影响.由于政策会影响价格,但在短期政策分析时并未考虑价格变动效果,长期若加入价格变动效果则会发现政策对要素及产量供需之影响均为不确定,亦即政策短期有效,但长期效果不定.在市场均衡下,能源作物与生质柴油补贴为正向关系,而生质柴油补贴与燃料税亦为正向关系.最后设定一社会福利极大化模型,在政府政策目标与预算限制下,观察政策变量间之相关性,发现能源作物补贴与其它燃料税率为正向关系,表示当政府提高燃料税的同时亦要增加能源作物的补贴.在社会福利模型中,其它燃料的税率弹性为政策决定的关键因素,当消费者对其他燃料需求的税率弹性大于-1时,政府应该对能源作物与生质柴油进行补贴.  相似文献   

4.
探讨了叔丁醇体系利用脂肪酶Novozym435催化乌桕脂制备生物柴油的工艺过程.获得的最优工艺条件为2.5 g乌桕脂中加入0.6 mL甲醇、0.75 mL叔丁醇和4%油重的脂肪酶,50℃反应12 h后生物柴油得率为92.3%.酶回收利用10次,生物柴油得率仍能保持大于90%.结果表明:该工艺条件下乌桕脂可有效转化为生物柴油,且脂肪酶能维持很好的操作稳定性.  相似文献   

5.
叔丁醇体系中动物油脂制备生物柴油   总被引:7,自引:0,他引:7  
探讨了叔丁醇体系中脂肪酶Novozyme 435催化动物油脂制备生物柴油的新工艺。用猪油做原料,醇油摩尔比为5∶1, Novozyme 435用量3%(质量分数),叔丁醇用量40%(体积分数),50℃下240r/min反应24 h,生物柴油得率为95.2%。酶重复使用10批次后生物柴油得率仍保持在90%以上,结果表明新工艺条件下猪油可以有效转化为生物柴油,且脂肪酶能保持良好的稳定性。  相似文献   

6.
文章以经过溶剂脱酸预处理的麻疯树油、甲醇为原料,在氢氧化钠催化作用下,研究了通过转酯化反应制备生物柴油工艺并确定了最佳工艺条件。试验依次考察了催化剂用量、反应温度、醇油摩尔比及反应时间对脂肪酸甲酯产品(即生物柴油)得率的影响。试验结果表明,最佳转酯化反应条件为:氢氧化钠用量为麻疯树油重量的1%,反应温度为50℃,醇油摩尔比为6:1,反应时间为60min。在此条件下脂肪酸甲酯产品得率为87.2%。  相似文献   

7.
地沟油固定化脂肪酶生产生物柴油(英文)   总被引:1,自引:0,他引:1  
研究了地沟油和甲醇在三段式反应器中固定化脂肪酶上合成生物柴油。对地沟油的酸值、皂化值以及水含量进行了检测。考察了进料流速、溶剂、水含量对反映的影响。在40℃,正己烷作溶剂,添加水含量为地沟油质量的20%,每一段反应器中添加的甲醇与地沟油的摩尔比为1∶1时,生物柴油产率为94%。  相似文献   

8.
新型脂肪酶LipB52催化生物柴油   总被引:3,自引:0,他引:3  
一种来源于荧光假单胞菌的新型脂肪酶基因lipB52在大肠杆菌BL21(DE3)中获得表达,并且利用Ni-NTA亲和柱时脂肪酶LipB52进行纯化.采用固定化脂肪酶LipB52催化大豆油与甲醇的转酯反应生产生物柴油.实验考察了温度、底物摩尔比、酶用量、有机溶剂、酶的种类以及油的类型对于反应的影响,结果表明:转酯反应的最佳反应条件为:m(酶):m(油)=20:80,n(油):n(甲醇)=1:4、正庚烷作为溶剂、反应温度为30℃,在此条件下脂肪酶LipB52表现出很高的催化活性,反应40 h后甲酯的产率高达92%.  相似文献   

9.
固定化脂肪酶催化棉籽油合成生物柴油   总被引:4,自引:0,他引:4  
对比多种载体固定化脂肪酶的吸附效果,确定了以大孔吸附树脂D101为载体,采用先吸附后交联的方法固定脂肪酶。固定化后脂肪酶的稳定性得到较明显改善,最适反应温度50℃,最适反应pH值为8。确定了固定化脂肪酶催化棉籽油与甲醇转酯化反应合成生物柴油工艺条件,醇油比3∶1,含水量1.25%(V/V),加入质量比(酶量与固定化载体)0.48的固定化酶,反应介质辛烷,在40℃反应24h催化生物柴油的合成,最高转化率可达到65%。  相似文献   

10.
稻壳灰负载K_2CO_3催化制备生物柴油   总被引:7,自引:0,他引:7  
以廉价的稻壳(RH)为原料,制备了K2CO3负载稻壳灰(RHA)的固体碱催化剂,用于催化制备生物柴油.利用X-射线衍射(XRD)、N2吸脱附、X射线能谱(EDS)对催化剂的结构进行了表征,并考察了K2CO3负载量、催化剂用量、反应物的醇油摩尔比和反应时间等因素对生物柴油产率的影响以及催化剂的可重复性使用.实验结果表明:稻壳在800℃下焙烧后制备的K2CO3/HRA催化剂,当K2CO3负载量为50%、催化剂用量为16%、醇油摩尔比为12∶1、在60℃下反应70,min后,生物柴油产率为92.6%.催化剂在重复使用5次以后,生物柴油产率降至66.8%,主要原因是催化剂中K元素的流失.  相似文献   

11.
大豆油在以活性炭为载体的负载型固体碱催化剂(KOH/C,K2CO3/C,KNO3/C)的作用下与甲醇酯交换反应制备生物柴油.考察了催化剂用量、醇油摩尔比、反应温度、时间等因素对产物收率的影响.结果表明:以上3种催化剂都可以催化酯交换反应,其中KOH\C的催化效果最好.当催化剂的质量为大豆油的2%、醇油摩尔比为10:1、...  相似文献   

12.
研究了餐饮废油在甲醇钠的催化作用下制取生物柴油的工艺条件,实验表明其酯交换过程的最佳工艺条件是醇油物质的量比为7:1、反应时间为1.5h、催化剂质量为废油的1.5%及反应温度为60℃。通过对生成的生物柴油作理化性质检测,结果表明,其质量指标完全符合柴油优级品的标准。  相似文献   

13.
负载型固体碱催化制备生物柴油的研究   总被引:4,自引:0,他引:4  
以负载型固体碱(KF/Al2O3、KNO3/Al2O3和K2CO3/Al2O3)作催化剂,菜籽油与甲醇通过酯交换反应制备生物柴油,系统地研究了催化剂制备条件及酯交换条件对产物收率的影响.结果表明:以上3种催化剂都可以较好地催化酯交换反应,其中负载KF催化剂的催化效果更好一些.当催化剂焙烧温度为873 K、负载物和载体的质量比为0.15~0.20时制备的催化剂活性最强,用此催化剂催化酯交换反应,当醇油摩尔比为12∶1~10∶1、催化剂用量为2%~3%、时间为60 min、温度为333~338 K时,生物柴油收率可达85%~87%.  相似文献   

14.
对D296R大孔型强碱性阴离子交换树脂进行预处理、转型、再生,并用于固定床反应装置内催化棕榈油和甲醇进行连续酯交换反应,通过与其他树脂催化剂对比,研究了不同反应温度、醇油摩尔比和反应停留时间对生物柴油收率的影响.采用该催化剂催化制备生物柴油,催化活性较高.在醇油摩尔比为9∶1、反应温度为55,℃、反应停留时间为60,min时,酯交换制备生物柴油的产率达到89.5%.本研究对用于生物柴油的连续制备和大规模工业化生产有着重要的意义.  相似文献   

15.
将回收的高酸值潲水油经酸催化处理,可使其酸价降低到2mgKOH/g,再用碱催化酯交换制取生物柴油,所得到的生物柴油与石化柴油的技术指标相当。  相似文献   

16.
生物柴油的质量与生产过程密切相关.原料的预处理、精炼和生物柴油的制备过程决定生物柴油是否能满足生产标准.通过阐述生物柴油的标准以及影响生物柴油品质的因素,提出提高生物柴油产品质量的建议.  相似文献   

17.
动植物油脂制备生物柴油的研究   总被引:3,自引:0,他引:3  
阐述了由动植物油脂制备生物柴油对国民经济可持续发展的重要意义,介绍了生油柴油的特性和标准及国内外生物柴油的研究进展和应用状况;综述了生物柴油的制备方法:均相化学催化法、非均相化学催化法、生物催化法、超临界法;展望了我国生物柴油的发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号