首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用溶胶-凝胶法制备了系列近红外发光材料Y_(1.98-x)Yb_xEu_(0.02)O_3(其中x=0,0.01,0.02,0.04,0.06,0.10),并采用X射线衍射仪(XRD)、荧光光谱(PL)等测试方法、技术对样品的物相结构和发光特性进行了表征及测试.结果表明:Eu~(3+)和Yb~(3+)掺杂的荧光粉中,Eu~(3+)和Yb~(3+)部分取代了Y~(3+),并占据其晶格位置,而对Y_2O_3的立方相晶体结构未产生显著影响;在466 nm波长(Eu~(3+)的特征激发峰)激发下,在可见光区及近红外光区可观察到较强的发射光谱,其中,Y_(1.94)Yb_(0.04)~(3+)Eu_(0.02)~(3+)O_3在近红外光区发光效率最高.采用溶胶-凝胶法制备出Eu~(3+)和Yb~(3+)掺杂的新型荧光材料,可将硅太阳能电池吸收较弱的高能光子转换成吸收较好的近红外光子,可有效解决太阳光谱与硅太阳能电池光电响应之间存在的光谱失配问题.  相似文献   

2.
以正硅酸乙酯(TEOS)为硅源,采用Stber反应制备了平均粒径为250nm的SiO2纳米球,然后以柠檬酸为表面活性剂和修饰剂,在水醇体系中,利用均相沉淀法制备了SiO2@CaF2:Eu3+核壳纳米球,并对其进行了煅烧处理.运用X-射线粉末衍射(XRD),傅立叶变换红外光谱仪(FT-IR)以及透射电子显微镜(TEM)分别对产物的物相、表面性质及形貌尺寸进行了分析表征.最后,使用荧光分光光度计对样品的激发和发射光谱进行了分析.结果表明,CaF2:Eu3+包覆在非晶态的SiO2表面,该样品具有很好的荧光性能.  相似文献   

3.
采用Pechini法制备Eu3+掺杂的CeO2:Eu3+薄膜.利用X射线衍射(XRD)﹑原子力显微镜(AFM)和光致荧光光谱(PL)对样品进行表征.结果表明:薄膜样品在700℃就结晶成纯面心立方萤石结构的多晶薄膜;PL激发谱中,300~360 nm的宽带激发峰起源于基质CeO2的吸收.  相似文献   

4.
通过水浴离子交换法,制备出长波紫外激发的Eu3+/Eu2+多色发光中心荧光材料,并研究了烧结温度对结构和光学性质的影响.结果表明:随着Eu3+离子掺杂浓度的升高,615 nm处的红光锐线发射峰逐渐增强,当掺杂浓度为5%时,效果最好,随着Eu3+离子掺杂浓度的继续增加,红光光强逐渐减弱;当掺杂浓度为3%时,448 nm处的蓝光发射效果最好,随着浓度的继续增加,蓝光光强也逐渐减弱.  相似文献   

5.
通过溶液法制备了不同铕(Eu3+)掺杂量Ti O2纳米颗粒(Eu3+/Ti O2),利用XRD、TEM、XPS对其进行了表征.在可见光照射下,以光催化降解常用的工业染料为目标反应,探讨了Eu3+掺杂量、催化剂用量、溶液p H值和催化剂重复利用对催化活性的影响,以优化光催化条件.结果表明:煅烧温度为500℃,Eu3+/Ti O2光催化剂晶型为锐钛矿型,其晶粒尺寸为14 nm;Eu3+离子的最佳掺杂摩尔比r(Eu3+︰Ti O2)=3%,样品加入量为1.25 mg/m L,p H=10.75时样品光催件性能最佳;其3次循环降解甲基紫,60 min内降解率仍保持在约96%,说明Eu3+/Ti O2光催化剂具有良好的稳定性.  相似文献   

6.
利用高温固相反应法制备CaSnO3:Eu3+发光体,采用X射线衍射(XRD)技术和荧光光谱等测试手段对样品进行研究.结果表明:Eu3+离子的掺杂未改变CaSnO3的晶体结构;Ca1-xEuxSnO3样品的发射以电偶极跃迁5D0-7F2为主,在紫外光照射下产生强的红光发射;Ca1-xEuxSnO3样品在240~340 nm范围内存在Eu3+-O2-电荷迁移吸收带,随着Eu3+掺杂浓度x的增加,吸收带峰位从276 nm红移到281 nm附近.  相似文献   

7.
Eu~(3+)和CaWO_4共沉淀发光材料的制备及其发光性质   总被引:1,自引:0,他引:1  
通过共沉淀技术制备了稀土离子Eu3+和CaWO4共沉淀发光材料,并通过测试样品的红外光谱(IR)、激发光谱、发射光谱,研究了稀土离子Eu3+和CaWO4共沉淀发光材料的结构和发光性能.结果显示:反应产物中有CaWO4生成,在实验过程中加入的有机活性剂基本除净; 样品显示出Eu3+的特征发射光峰位于588nm和612nm,分别属于5D0→7F1和5D0→7F2跃迁,对应的主要激发光谱位置分别是363nm(7F0→5D4),383nm(7F0→5G2),395nm(7F0→5L6),414nm(7F0→5D3),465nm(7F0→5D2),536nm(7F0→5D1),560nm(7F2→5D1),585nm(7F0→5D0).说明稀土离子Eu3+在共沉淀材料中具有良好的发光性能,其含量为0.50%时发光性能最好.  相似文献   

8.
以LiOH·H_2O、Si(OC_2H_5)_4和Eu(NO_3)_3·6 H_2O为主要原料,采用简单的机械球磨法,在室温下合成了Li_2SiO_3:Eu~(3+)荧光粉前驱体,再经高温灼烧,得到一系列Li_2 SiO_3:x%Eu~(3+)红色荧光粉。研究了灼烧温度、保温时间及Eu~(3+)的物质的量浓度对产物的结构和发光性能的影响。结果表明,当x在1.5~15这个较宽的范围内,随着Eu~(3+)物质的量的增加,Li_2SiO_3:x%Eu~(3+)荧光粉的物相组成保持不变,且直到x值达到12之后,才出现了浓度淬灭现象;当灼烧温度为1173K、保温时间为2h时,荧光材料的发光强度达到最大值。在467 nm激发下,基于Eu~(3+)的~5D_0→~7F_2(615 nm)跃迁,Li_2SiO_3:Eu~(3+)荧光粉发射出强烈的红光。  相似文献   

9.
采用水热法,以十六烷基三甲基溴化铵(CTAB)为表面活性剂,合成了NaGd(WO4)2:Eu3+发光材料.采集XRD,SEM图谱来表征样品的晶型与形貌,利用激发光谱和发射光谱研究了材料的发光特性.结果表明,所制得的NaGd(WO4)2:Eu3+是由纳米棒组成的绒球状发光材料,球体直径为100nm,纳米棒长2~5μm.样品不仅可以被紫外光(266nm)激发,还能被近紫外光(393nm)和蓝光(464nm)有效激发,其主发射峰值位于614nm,为红色荧光成分,且当Eu3+掺杂物质的量分数为3%时,此发射峰达到最大,该发光粉可用于制造紫外光芯片激发的白光LED.  相似文献   

10.
分别采用碱催化法、酸催化法及种子法合成Eu3+掺杂SiO2微球.结果表明:种子法为合成Eu3+掺杂SiO2微球的最佳合成方法,所得产物为粒径均一(直径370~380nm)、单分散性和球形度均较好的微球;在紫外光激发下,微球表现出较强的Eu3+特征红光发射.  相似文献   

11.
采用高温固相法合成了Ca3B2O6:Eu3+红色荧光粉,并对其发光性质进行了研究.样品的激发光谱由位于220~350 nm的带状谱和350~500 nm的一系列窄带组成,这些窄带是由Eu3+的f-f跃迁引起的,光谱峰值分别为280,396和469 nm.它可以被近紫外光辐射二极管管芯产生的350~410 nm辐射有效激发.用396 nm激发得到样品的发射光谱,峰值位于578,590,610,618和650 nm,分别由Eu3+离子的5D4→7FJ(J=0,1,2,3)跃迁引起的.研究了Eu3+离子浓度和电荷补偿剂对发射光谱的影响.结果显示随着Eu3+浓度增加,发光强度逐渐增强,未发现浓度猝灭现象.掺入Li+,Na+,K+3种离子作为电荷补偿剂,均提高了样品的发光强度,其强度从大到小依次为I(Li+)I(Na+)I(K+),说明Li+是最佳的电荷补偿剂.  相似文献   

12.
Gd_2Mo_4O_(15):Eu~(3+)荧光材料的制备与发光性能研究   总被引:2,自引:2,他引:2  
采用了高温固相法制备了稀土离子Eu3+掺杂的Gd2M04O15:Eu3+荧光粉,通过X-射线衍射(XRD)和荧光光谱的测定,分别讨论了烧结温度、烧结时间以及稀土离子Eu3+掺杂量对发光性能的影响.测试结果表明Gd2Mo4O15:Eu3+荧光粉在近紫外区(uv)(393 nm)和蓝光区(464 nm)可以被有效的激发,Gd2Mo4O15:Eu3+荧光粉发出明亮的红光,对应于Eu3+的4f-4f跃迁,当Eu3+的掺杂浓度约为40 mol%时,在616nm处的发光强度最大.在393,464 nm的吸收分别与目前应用的紫外光和蓝光LED芯片相匹配.因此,Gd2Mo4015:Eu3+是一种可能应用在白光LED上的红色荧光材料.  相似文献   

13.
利用溶胶-凝胶技术制备Eu3+、V共掺杂的SiO2材料,通过差热-热重分析、傅立叶红外光谱、X射线衍射、激发光谱与发射光谱等测试手段对粉末的晶型、结构、发光性质进行研究.结果表明:材料属于非晶态,800℃退火后Eu3+、V共掺杂的SiO2样品的结构基本稳定,只存在SiO2的网状结构; 激发光谱显示,Eu-O电荷迁移带随着V掺杂量的增加而消失,产生强度较大的320nm处的7F0→5H3跃迁; 发射光谱显示,随着V的掺入,最佳激发波长由393nm向320nm转移,同时出现了467nm,577nm,588nm,612nm处的发射峰,它们分别归属于Eu3+的5D2→7F0跃迁与VO3-4的蓝色发射的叠加跃迁、Eu3+的5D0→7F0跃迁、5D0→7F1磁偶极跃迁和5D0→7F2的电偶极跃迁,实现了同一物质同时产生蓝色荧光和红色荧光.同时发现,VO3-4对Eu3+的发光有较好的敏化作用,并通过所得的能级图对样品的跃迁机理进行了分析.  相似文献   

14.
采用溶胶凝胶法与沉淀法,制备了Eu3+:ZnO1-xSx-2TiO2-SiO2发光材料,通过DTA-TG、IR、Raman、XRD、激发和发射光谱研究了材料的结构和发光性能.结果表明,样品在600℃退火处理后,体系基本达到稳定状态,主要以TiO2、ZnS的晶态形式存在;存在Ti-O-Ti、Si-O-Si、Ti-O-Si,Zn-S键,且Si-O-Si三维网络结构被破坏,这种结构的变化有利于Eu3+的掺杂和发光.激发和发射光谱测试表明,最佳激发波长为可见光465nm,最佳退火温度为600℃,Eu3+最佳掺杂量为6.0%.同时证明Eu3+:ZnO1-xSx-2TiO2-SiO2材料的发光性能比Eu3+:ZnO-2TiO2-SiO2的好,说明体系中硫的引入改善了材料的发光性能.  相似文献   

15.
利用燃烧法在600℃合成了SrAl2O4:Eu2+、Dy3+、Ho3+长余辉发光材料.所得产物分别进行了XRD、TEM、FL测试和激发一定时间后的亮度测试,分析结果表明:所得燃烧产物都单一的SrAl2O4相,TEM测试表明磷光体的平均粒径在50nm左右,发射光谱表明最大发射峰位于513 nm,产物的亮度测试表明,SrAl2O4:Eu2+、Dy3+中掺入一定量的Ho3+,会使其余辉性能增强.  相似文献   

16.
以H3BO3为助熔剂,在1200℃、H2还原气氛下成功制备出绿色荧光粉SrAl2O4∶Eu2+,并研究了不同H3BO3含量对SrAl2O4∶Eu2+发光性能和余辉特性的影响,结果表明随着H3BO3含量的增加,样品的发射光谱发生了"蓝移"现象,并随B3+的掺入,Sr0.96Al2O4∶0.04Eu2+呈现出了长余辉特性,同时增强了样品的发光强度和余辉时间,最佳的H3BO3含量为15%,其余辉时间可以达到6h.  相似文献   

17.
Sr_3Y_2(BO_3)_4:Eu~(3+)红色荧光粉在白光LED应用上有很大潜能,以高温固相法在1 000℃下焙烧5h可以制备出发光性能最佳的Sr_3Y_(2-x)(BO_3)_4:xEu~(3+)红色荧光粉.通过X-ray衍射仪(XRD)和荧光光谱等测试手段对Sr_3Y_(2-x)(BO_3)_4:xEu~(3+)荧光粉的制备条件、结构及发光性能进行表征.结果表明,适量掺杂Eu~(3+)并不能使Sr_3Y_2(BO_3)_4的结构发生改变.以394nm的近紫外光激发Sr_3Y_(2-x)(BO_3)_4:xEu~(3+)荧光粉具有较好的发光性能,最强发射峰为Eu~(3+)离子的5D0→2F2电偶极跃迁,波长为618nm的红光.当Eu~(3+)离子的掺杂量为15%(mol)时,发光强度最大.  相似文献   

18.
利用微波辐射加热的方法合成了均匀的球形NaLa(MoO4)2粉体颗粒,研究了CTAB对粉体形貌的影响,并用激光粒度仪测定了其粒径分布.结果表明:CTAB改善了粉体形貌,球形颗粒的均一性也得到了提高.当CTAB的加入量为20 mmol·L-1时颗粒分布窄,中心粒径D50=0.854μm,有利于在芯片基底上形成致密的荧光粉涂层.使用XRD,TEM和EDS测定了结构和成分,表明粉体颗粒为纯四方相的NaLa(MoO4)2多晶颗粒,且未检测到杂质元素的存在.NaLa(MoO4)2:Eu3+的室温光致发光谱表明了样品可以被紫外、近紫外和蓝光有效激发,从而发射波长为616 nm的高强度红光,使其在LED领域有潜在的应用价值.  相似文献   

19.
以Zn2SiO4为基质,用高温固相法(ss),sol-gel法(sg)制备得到Zn2SiO4:Dy^3+长余辉发光材料,该发光材料的制备及长余辉发光性能至今尚未见到文献报道.由该发光材料的激发谱发现,其在紫外的235-350nm范围有吸收,其发射光谱表明,在紫光(378nm,393nm)、橙光(595nm)、红光(691nm)部位有发射峰.通过对比掺杂与未掺杂样品发射光谱,说明样品发光是由基质Zn2SiO4产生的,Dy^3+的掺杂只是使材料形成了陷阱能级进而发出长余辉,还阐述了Zn2SiO4:Dy^3+的可能发光机理.  相似文献   

20.
利用脉冲激光沉积方法,不同沉积条件下在SiO_2/Si、蓝宝石单晶和石英玻璃3种衬底上制备了c轴择优取向的Eu~(3+)掺杂ZnO(Eu:ZnO)薄膜.以SiO_2/Si为衬底,具体研究了衬底温度、氧压、激光重复频率及沉积时间对Eu:ZnO薄膜结晶质量和荧光性能的影响.发现沉积条件相同时,在蓝宝石和SiO_2/Si衬底上制备的薄膜结晶质量好于石英玻璃衬底上的.利用273nm波长的氙灯泵浦,室温下所有样品的光致荧光谱中都测得了稀土Eu~(3+)在616nm附近的特征发光峰,而且在蓝宝石衬底上生长的Eu:ZnO薄膜的荧光强度最强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号