首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 97 毫秒
1.
蔚跃 《科学技术与工程》2012,12(28):7231-7235
捷联惯导系统在初始对准过程中由于模型参数与实际系统存在偏差,并且系统噪声与量测噪声统计特性往往是未知的,采用卡尔曼滤波不能取得理想的滤波效果。为避免滤波发散以及模型的不确定性,提出了基于Sage-Husa算法的区间自适应卡尔曼滤波方法。给出了捷联惯导系统的误差模型以及区间自适应卡尔曼滤波方程。在噪声统计特性未知时,比较了常规卡尔曼滤波与区间自适应卡尔曼滤波在初始对准中的应用效果。仿真结果表明,区间自适应卡尔曼滤波在噪声统计特性未知时能够有效地提高系统的滤波效果,是一种比较理想的初始对准滤波方法。  相似文献   

2.
车载激光捷联惯导系统的快速初始对准及误差分析   总被引:5,自引:0,他引:5  
研究车载激光陀螺捷联惯导系统的快速初始对准技术,采用双位置对准的技术方案,给出了双位置初始对准的基本原理及软件流程,对对准精度 实际测试,并对影响对准精度的误差源进行了分析,双位置对准方案,消除了陀螺常值漂移和加速度计零偏对对准精度的影响。  相似文献   

3.
捷联惯导系统的静基座快速初始对准方法   总被引:18,自引:0,他引:18  
建立了捷联惯导系统的误差模型,并对系统模型进行了可观测性分析;然后基于SINS误差模型的特点,通过对所采用卡尔曼滤波器仿真结果的分析,提出了一种快速估计方位失准确φD的方法,从而大大缩短了初始对准时间,提高了对准速度;最后,计算机仿真结果表明了该方法的有效性。  相似文献   

4.
里程计组合的捷联惯导系统运动基座对准研究   总被引:2,自引:0,他引:2  
研究利用里程计(DTU)辅助实现惯性导航系统(SINS)运动基座下初始对准.利用分段线性定常系统分析方法,提取了不同运动基座情况下SINS/DTU组合系统的可观测性矩阵;通过计算可观测性矩阵奇异值的大小,定量分析了SINS/DTU组合系统的可观测度;比较了SINS/DTU组合系统和SINS/GPS组合系统的对准机理;并进行了系统仿真.结果表明,这种基于SINS/DTU组合的方法能够实现SINS系统的自主式初始对准;但与SINS/GPS组合系统相比,系统的可观测度稍弱,所需对准时间稍长.  相似文献   

5.
低成本捷联惯导系统的静基座快速精对准方法   总被引:1,自引:0,他引:1  
针对低成本捷联惯导系统难以完成航向自对准以及静基座对准可观性和可观度低的问题,提出了同时将速度误差、姿态误差和航向误差作为观测量的卡尔曼滤波对准方案;建立了姿态误差、航向误差与数学平台误差角之间的量测关系;推导了利用加速度计计算姿态的方法,并配置磁传感器作为外观测设备提供航向参考基准,从而获得滤波器观测量.结果表明,建立的对准模型和方法有效提高了系统的可观性和可观度,缩短了对准时间、提高了对准精度,并且实现了低成本捷联惯导系统的航向对准,具有重要的工程实用价值.  相似文献   

6.
激光陀螺惯导系统扰动基础上的初始对准   总被引:2,自引:0,他引:2  
扰动基础上的初始对准是车载激光陀螺惯导系统(L INS)的难点技术之一。针对 L INS在车辆发动机不关闭和有少量人员走动的情况 ,进行了大量实验研究。通过分析L INS惯性元件的信号特征 ,改进 Kalm an滤波对准技术。对获得的观测信号进行预处理 ,降低干扰影响 ;并改进Kalman算法 ,使之具有更好的稳定性。实验结果表明 ,该算法对于提高扰动基础上的对准精度是有效的  相似文献   

7.
为解决传统粒子滤波算法中影响状态估计性能的采样枯竭问题,提出一种高斯混合粒子滤波(GMPF)算法,基于Sigma点卡尔曼滤波(SPKF)和粒子滤波的特点,采用加权EM算法取代传统粒子滤波的再采样过程,减弱了采样枯竭的影响,增强了算法的估计性能.对捷联惯导系统静基座大方位失准角初始对准的仿真结果表明,该算法的估计精度优于扩展卡尔曼滤波.  相似文献   

8.
动基座条件下捷联惯导系统由于动态环境的影响,即使采用辅助信息下的组合初始对准也需要较长时间。针对这一问题提出了一种基于观测量扩展的捷联惯导动基座快速初始对准方法。在不改变系统状态方程的情况下,利用车体坐标系横向和垂直方向上速度为零这一约束条件,将基于车体坐标系横向和垂直方向的速度作为扩展的观测量。推导了扩展后的观测方程。进而利用卡尔曼滤波完成捷联惯导动基座初始对准。进行了运动条件下的仿真。仿真结果表明新方法在保证对准精度的同时缩短了对准时间。该方法算法简单,不需要增加辅助信息,具有很好的工程应用价值。  相似文献   

9.
船用捷联惯性导航系统初始对准的最优化设计   总被引:2,自引:0,他引:2  
研究了对船用捷联惯性导航系统的初始对准问题,在船舶晃动的情况下,可采用鲁棒状态估计器对失准角进行估计,并利用状态估值对系统的误差进行补偿,仿真结果证明了新型滤波器对于克服船舶晃动干扰具有良好效果。  相似文献   

10.
以陆地导航为背景,研究动态规划理论在捷联惯导系统初始对准中的应用.采用闭环控制方法,选择惯性导航的误差状态作为系统反馈,用动态规划理论优化控制策略,论述了系统在二次型性能指标下,如何从动态规划理论出发,寻找实现对准策略.  相似文献   

11.
遗传算法在捷联惯导初始对准中的应用研究   总被引:1,自引:0,他引:1  
本文分析了捷联惯性导航系统(SINS)进行初始对准的基本原理,简要介绍了遗传算示的搜索过程,并将其用于SINS的初始对准之中。根据初始对准的本质构建了GA的适应度函数,确定了遗传算子,基于惯性器件的量测值对这一过程进行了计算机仿真。仿真结果表明,将GA用于SINS的初始对准,精度与常规方法相仿,但由于GA的并行性和简单性,使得对准时间大大减少,具有很大的优越性。  相似文献   

12.
基于多模型估计提高捷联惯导系统初始对准的精度   总被引:3,自引:1,他引:2  
采用卡尔曼滤波技术进行捷联惯导系统静基座初始对准时,不能准确获得实际系统中噪声的方差,存在一定的不确定性;同时,由于一些状态不可估计或估计效果很差,采用简化状态方程进行对准,存在着模型参数不确定性。本文采用多模型估计方法处理这些不确定性问题,大大提高了对准的精度,仿真结果表明这一方法是有效性的。  相似文献   

13.
采用小波神经网络的捷联惯导系统静基座快速初始对准   总被引:6,自引:0,他引:6  
利用多输入多输出小波神经网络具有结构简单、计算量少的优点,将其应用于静基座捷联惯导系统的初始对准,并利用北向、东向失准角快速估计地向陀螺的失准角,得到小波神经网络的训练样本,对小波神经网络采用随机梯度法进行训练,仿真结果表明该方法收敛速度快,能满足惯导系统实时性的要求。  相似文献   

14.
牛军锋 《科学技术与工程》2012,12(28):7289-7292,7297
为了缩短捷联惯导系统的初始对准时间并提高对准精度,分别设计了常规卡尔曼滤波器和自适应卡尔曼滤波器用于精对准。在系统噪声统计特性未知时,自适应卡尔曼滤波算法利用滤波残差的均值和方差,不断对卡尔曼滤波的状态噪声方差阵和测量噪声方差阵进行实时修正,从而提高滤波器对模型不确定性和噪声变化的适应能力和鲁棒性。仿真结果表明,使用自适应UKF算法与常规的UKF算法相比,可以获得更优的对准精度和快速性。  相似文献   

15.
SINS非线性自对准中的强跟踪UKF算法设计   总被引:1,自引:0,他引:1  
为了实现噪声不确定和干扰环境下捷联惯导系统(SINS)的快速初始对准,结合无迹卡尔曼滤波(UKF),从强跟踪滤波2个条件出发,提出了一种新的强跟踪UKF算法.该算法充分利用了SINS非线性自对准滤波模型的特点,简化了强跟踪UKF的步骤,很大程度上减小了计算量,提高了算法的实时性.在给出算法流程的同时给出了该强跟踪UKF成立的证明,并根据强跟踪滤波充分条件给出了次优渐消因子求解过程,分析了算法的优越性.最后,通过SINS大方位失准角初始对准仿真和车载试验结果证明了新的强跟踪UKF算法的正确性和优越性.  相似文献   

16.
基于捷联惯导系统动基座初始对准对速度和路线要求较高,粗对准方位角失准过大影响精度等问题,提出引入电子地图对算法进行辅助修正的组合对准方法.通过地图匹配进行位置修正提高载车定位精度,最大限度减小第二次停车所带来的定位误差,提高对准精度.实验结果证明,动基座初始对准方法与电子地图匹配算法的有效组合,降低了对载车速度及路线的要求,极大提高了系统对准精度.  相似文献   

17.
ESO抑制扰动特性的研究   总被引:1,自引:1,他引:0  
本文给出了自抗扰控制技术用于滤波的研究结果,提供了一些仿真实例。结果表明,这种新型的控制技术对高频噪声具有较好的滤波特性。  相似文献   

18.
基于四元数的捷联惯导惯性系晃动基座自对准算法   总被引:1,自引:0,他引:1  
为提高捷联惯导系统在晃动基座下初始对准的快速性和精度,提出了一种基于四元数的捷联惯导惯性系晃动基座自对准算法.该算法利用惯性坐标系下的姿态更新来实时地反映载体在晃动干扰下的姿态变化,通过四元数推导将初始姿态的最优估计转化为Wahba姿态确定问题,以消除角晃动干扰的影响;并根据惯性系下重力矢量和晃动干扰加速度不同频的特点,引入小波阈值消噪以消除线振动干扰的影响,从而提高算法在晃动基座下的对准精度.仿真结果表明,该算法不需要进行粗对准,具有角晃动干扰隔离能力和线振动干扰抑制能力,能够实现晃动基座下的快速、精确自对准.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号