首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
镁锂合金是目前最轻的金属工程结构材料,具有密度低、比强度高、阻尼性能好等优点,在航空航天、兵器军工、3C等领域具有广阔的应用前景。但是现有的镁锂合金绝对强度较低,而现有提升镁合金强度的方式通常带来其阻尼性能的降低,因此,实现镁合金强度与阻尼的协同调控是研究者亟待解决的问题。本文旨在研究通过热挤压来实现双相Mg–Li–Zn–Mn合金的微观组织调控与优化,以期实现合金力学性能和阻尼性能协同调控。结果表明:Mg–8Li–4Zn–1Mn合金主要由α-Mg、β-Li、Mg–Li–Zn相和单质Mn组成。热挤压过程中,合金内部发生动态再结晶,合金的晶粒尺寸由铸态的50 μm细化到5.86 μm。挤压变形后,细小的析出相均匀分布在Mg–8Li–4Zn–1Mn合金中。挤压态合金的屈服强度( YS )、抗拉强度( UTS )和伸长率( EL )分别达到156 MPa、208 MPa和32.3 %,较铸态合金显著提升。挤压态和铸态Mg–8Li–4Zn–1Mn合金均呈现出优异的阻尼性能,在应变振幅为2?×?10?3时的阻尼值 ( Q?1 )分别为0.030和0.033,合金阻尼性能无明显变化。热挤压变形可以显著提高Mg–8Li–4Zn–1Mn合金的力学性能,而阻尼性能无明显变化,这表明基于合金化和热变形工艺协同调控,可以实现双相镁锂合金微观组织–力学–阻尼性能之间的协同调控,研究为后续高强高阻尼镁合金的研发提供重要的理论指导。  相似文献   

3.
4.
5.
Al–Zn–Mg合金强度高且具备良好的成型和焊接性能,已广泛应用于先进装备制造中,然而服役过程中易发生局部腐蚀失效,对构件的可靠性和安全性造成威胁。本文通过第一性原理计算和扫描开尔文探针显微镜(SKPFM)研究了α-AlFeMnSi相元素扩散对Al–Zn–Mg合金局部腐蚀行为的影响。材料建模和计算的结果表明,α-AlFeMnSi相中Fe、Mn、Si元素含量降低导致α-AlFeMnSi相/Al基体之间的平均功函数差由0.232 eV减小至0.065 eV。SKPFM实验观测到α-AlFeMnSi相中Fe和Si元素含量降低时,α-AlFeMnSi相/Al基体之间的平均Volta电位差由648.370 mV降低至432.383 mV。因此,α-AlFeMnSi相中元素的扩散降低Al–Zn–Mg合金的微电偶腐蚀敏感性。基于铝中原子扩散计算,热处理工艺(>550°C)有利于α-AlFeMnSi相中Mn元素扩散进入基体,降低α-AlFeMnSi相/Al基体微电偶腐蚀效应,提升Al–Zn–Mg合金耐局部腐蚀性能。  相似文献   

6.
采用表面覆盖剂及氩气保护的熔炼方法制备了Mg-5Li-x Y(x=0,1,2,3,4)合金,研究了稀土元素Y对挤压态Mg-5Li合金的显微组织及力学性能的影响.研究结果表明,Mg-5Li合金中的Y元素主要是以稀土化合物Mg24Y5的形式存在于合金中;挤压变形后,合金发生了明显的动态再结晶,出现了大量的等轴晶,弥散分布的Mg24Y5相阻碍了动态再结晶过程中的晶粒长大,晶粒明显细化.挤压态Mg-5Li-3Y合金获得了优异的力学性能,其抗拉强度和断裂伸长率分别达到了231.63 MPa和9.35%,合金断裂方式主要为韧性断裂.  相似文献   

7.
本工作研究了添加量小于1wt%的Zr和Mn对含2.5wt% Cu和2.5wt%–6.5wt% Zn的Mg–Zn–Cu合金的显微组织、力学性能、铸造性能和耐腐蚀性能的影响。通过对硬度和电导率的测量研究,找出具有最佳力学性能的最佳热处理方案。研究表明,由于Zr具有较强的晶粒细化效应,使得合金的屈服强度显著提高。然而,Mn和Zr的存在对合金的断裂伸长率有不利影响。研究结果表明,合金结构中Mg2Cu阴极相的析出对腐蚀行为产生了负面影响。然而,添加Mn降低了所研究合金的腐蚀速率。当铜含量为2.5wt%,锌含量为5wt%时,合金的力学性能、铸造性能和腐蚀性能得到了最佳的组合。而Mn或Zr的添加可以改善合金的性能;例如,添加Mn或Zr会增加合金的流动性。  相似文献   

8.
采用金相分析、拉伸试验、动态机械热分析等方法研究了不同含量zn对Mg一0.6Zr合金力学性能及阻尼性能的影响.结果表明,加入微量zn后,Mg一0.6Zr合金的强度和伸长率都得到提高,且强度随zn含量的增加而增大,而伸长率而随zn含量的增加变化不大;阻尼性能有所降低,且随zn含量的增加而降低,这是由晶粒细化和溶质原子增多所导致的结果.  相似文献   

9.
10.
11.
镁合金作为轻金属材料的代表,在电子、交通和航空航天等领域有着广阔的应用前景。然而镁合金仍存在强度低、延展性差和耐蚀性差等缺点,改善镁合金的强塑性已成为拓宽镁合金在工业应用的中的首要问题。本文利用超声辅助半固态搅拌法成功制备了TiC纳米颗粒增强低合金化Mg–2Zn–0.8Sr–0.2Ca基复合材料,并且对铸态复合材料进行热挤压变形,系统研究了挤压对其显微组织及力学性能的影响。结果表明,在较低的挤压温度或挤压速率下,复合材料动态再结晶的体积分数和再结晶晶粒尺寸有所降低。挤压条件为200°C, 0.1 mm/s时,复合材料中出现了晶粒尺寸约0.3 μm的细晶组织。挤压后的复合材料呈现强基面织构,当挤压温度从200℃增加到240℃时,基面织构强度随之增加。挤压条件为200°C,0.1 mm/s时复合材料的抗拉强度达480.2 MPa,屈服强度为462 MPa。对其强化机制进行理论计算表明相比与其他强化机制,细晶强化对强度的贡献最大。通过分析三种挤压后的纳米复合材料断裂行为,表明其断裂方式为韧脆混合型断裂。  相似文献   

12.
在AA2195标准成分基础上,通过加入微量元素Mg和Ag,研究了各合金薄板材料在180℃不同时效时间下的室温拉伸性能和显微组织特征,实验结果表明:单独加入Mg和单独加入Ag对AlLi合金都有强化效果,但Mg的单独作用显然比Ag要大得多.Mg和Ag共同加入则产生最大的强化效应,这说明Mg和Ag之间有强烈相互作用.  相似文献   

13.
通过气体保护制备了Mg-RE-Zn-Zr[RE-Ce-40La(wt%)的富铈稀土]合金,并对合金进行了热处理,测试了不同状态下合金的硬度、抗拉强度及伸长率等力学性能,采用光学显微镜、X射线衍射仪及扫描电镜对合金显微组织、拉伸断口进行了分析。结果发现,采用T6热处理工艺后,合金的晶粒尺寸明显细化,硬度、抗拉强度、屈服强度和伸长率显著提高,分别提高了11%,24%,7.3%和102%。  相似文献   

14.
采用金相分析、拉伸试验、动态机械热分析等方法研究了不同含量Zn对Mg-0.6Zr合金力学性能及阻尼性能的影响.结果表明,加入微量Zn后,Mg-0.6Zr合金的强度和伸长率都得到提高,且强度随Zn含量的增加而增大,而伸长率而随Zn含量的增加变化不大;阻尼性能有所降低,且随Zn含量的增加而降低,这是由晶粒细化和溶质原子增多所导致的结果.  相似文献   

15.
姚新兆 《科技信息》2006,(11):253-255
CaF2参与做覆盖剂熔炼Mg-Li合金是一种新的尝试,它在熔炼中更好的保护了Mg-Li合金的熔体,使合金基体更加纯净;CaF2在熔炼过程中还原出微量的Ca,它保护了熔体,又可以细化晶粒。此种工艺制作的Mg-Li合金的铸材和轧制板材在常温的塑性和强度都大幅提高,超过美国标准的LA141合金的性能,给Mg-Li合金的研究开辟了新的方向。  相似文献   

16.
采用SEM、EDS、XRD、TEM和力学性能测试等手段研究了挤压态Mg-9Li-3Al-xSr(LA93-xSr,x=0,1.5,2.5,3.5wt%)镁合金的微观组织与力学性能,探讨了Sr含量对挤压态合金的微观组织及力学性能的影响规律。结果表明:LA93-xSr镁合金包括α-Mg(hcp)和β-Li(bcc)两种基体相。Sr含量对挤压态合金的晶粒大小没有明显影响。随着Sr元素的加入,合金中形成Al4Sr新相,主要分布于α/β相界面,并沿挤压轴向呈流线分布。合金的强度随着Sr含量的增加呈现先增加后降低的趋势,合金的延伸率随着Sr含量的增加呈现逐渐降低的趋势。当Sr含量为2.5wt%时,挤压态Mg-9Li-3Al-2.5Sr(LAJ932)合金的抗拉强度达到最大值235.2MPa,屈服强度达到220.6MPa,延伸率为19.4%,合金呈现出良好的力学性能。挤压过程中,α-Mg相中发生形变诱发的晶粒细化,β-Li相中发生常规动态再结晶。  相似文献   

17.
研究了添加微量Y元素对Mg–2Zn–0.3Ca–0.1Mn–xY(x = 0,0.1,0.2,0.3)生物镁合金显微组织、力学性能和耐蚀性能的影响。结果表明,当Y含量从0wt%增加到0.3wt%时,晶粒尺寸从310 μm下降至144 μm,第二相体积分数从0.4%增长至6.0%,合金的屈服强度不断提高,抗拉强度和伸长率均先降低后升高。当Y元素含量提高到0.3wt%时,合金中开始析出Mg3Zn6Y相,且合金具有最优异的力学性能,其抗拉强度、屈服强度和伸长率分别为119 MPa、69 MPa和9.1%。另外,Y含量为0.3wt%时,Mg–2Zn–0.3Ca–0.1Mn–xY合金在模拟体液中表现出最优耐蚀性能。力学性能和耐蚀性能的提高主要归功于晶粒细化和析出的Mg3Zn6Y相。  相似文献   

18.
以形变Ti-47Al-2Mn-2Nb合金为对象,在77~1373K和10-5~10-1s-1应变速率范围内研究微量硼(a(B)=1.0%)对TiAl合金显微组织和拉伸性能的影响.发现,1.0%B能有效地细化形变Ti-47Al-2Mn-2Nb合金的近全片层组织,显著提高其中低温强度,改善中低温塑性,但不损害其高温强度,是提高TiAl合金综合性能的有效途径.还发现,除延脆转变温度附近外,1.0%B对形变TiAl合金断裂方式无明显影响.部分固溶于形变TiAl合金的硼原子可能与空位结合形成复合体,硼原子-空位复合体在一定温度下释放出空位,促进位错攀移,从而促进合金的延脆转变.  相似文献   

19.
采用氩气氛下感应熔炼和正向挤压变形制备了Mg-7.5Li-3.5Al-1Zn-1Ce-0.5Sn镁锂合金板材,然后在真空热处理炉中对挤压态合金进行等温退火,并采用金相观察和布氏硬度测试研究了等温热处理对合金板材显微组织和布氏硬度的影响.通过金相显微镜观察表明,等温处理温度对合金显微组织的影响较大,在较低温度下,只发生两相的形态和体积分数的变化,合金几乎不发生或需要较长时间才发生静态再结晶.在较高温度下,合金快速发生再结晶,合金晶粒细化,但随着保温时间的延长,晶粒有所长大.不同的组织形态对应的硬度不同,α相呈球化时的硬度值最高.  相似文献   

20.
研究了5083合金添加1.5%~5%Zn(质量分数)对合金显微组织和力学性能的影响.通过SEM和EDS对铸态、均匀化处理后和轧制态合金的微观组织进行了表征并测试轧制态合金的拉伸性能.结果表明:铸态合金随Zn含量的增加偏析程度增加,金属间化合物主要为富Mg和富Zn相.均匀化处理后的合金具有良好的轧制性能,均匀化处理后合金金属间化合物量明显减少,部分未溶金属间化合物是Mg_2Si和Al_3Fe相.轧制显著降低晶粒尺寸,轧制试样的晶粒尺寸约150 nm.随着Zn含量增加轧制态合金的屈服强度和抗拉强度增加,延伸率有所下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号