首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oscillations of intracellular Ca2+ in mammalian cardiac muscle   总被引:2,自引:0,他引:2  
C H Orchard  D A Eisner  D G Allen 《Nature》1983,304(5928):735-738
Contraction of cardiac muscle depends on a transient rise of intracellular calcium concentration ([Ca2+]i) which is initiated by the action potential. It has, however, also been suggested that [Ca2+]i can fluctuate in the absence of changes in membrane potential. The evidence for this is indirect and comes from observations of (1) fluctuations of contractile force in intact cells, (2) spontaneous cellular movements, and (3) spontaneous contractions in cells which have been skinned to remove the surface membrane. The fluctuations in force are particularly prominent when the cell is Ca2+-loaded, and have been attributed to a Ca2+-induced Ca2+ release from the sarcoplasmic reticulum. In these conditions of Ca2+-loading the normal cardiac contraction is followed by an aftercontraction which has been attributed to the synchronization of the fluctuations. The rise of [Ca2+]i which is thought to underlie the aftercontraction also produces a transient inward current. This current, which probably results from a Ca2+-activated nonspecific cation conductance, has been implicated in the genesis of various cardiac arrhythmias. However, despite the potential importance of such fluctuations of [Ca2+]i their existence has, so far, only been inferred from tension measurements. Here we present direct measurements of such oscillations of [Ca2+]i.  相似文献   

2.
A M Gurney  P Charnet  J M Pye  J Nargeot 《Nature》1989,341(6237):65-68
The entry of calcium ions into cells through voltage-activated Ca2+ channels in the plasma membrane triggers many important cellular processes. The activity of these channels is regulated by several hormones and neurotransmitters, as well as intracellular messengers such as Ca2+ itself (for examples, see refs 1-9). In cardiac muscle, myoplasmic Ca2+ has been proposed to potentiate Ca2+ influx, although a direct effect of Ca2+ on these channels has not yet been demonstrated. Photosensitive 'caged-Ca2+' molecules such as nitr-5, however, provide powerful tools for investigating possible regulatory roles of Ca2+ on the functioning of Ca2+ channels. Because its affinity for Ca2+ is reduced by irradiation, nitr-5 can be loaded into cells and induced to release Ca2+ with a flash of light. By using this technique we found that the elevation of intracellular Ca2+ concentration directly augmented Ca2+-channel currents in isolated cardiac muscle cells from both frog and guinea pig. The time course of the current potentiation was similar to that seen with beta-adrenergic stimulation. Thus Ca2+ may work through a similar pathway, involving phosphorylation of a regulatory Ca2+-channel protein. This mechanism is probably important for the accumulation of Ca2+ and the amplification of the contractile response in cardiac muscle, and may have a role in other excitable cells.  相似文献   

3.
Wang SQ  Song LS  Lakatta EG  Cheng H 《Nature》2001,410(6828):592-596
Ca2+-induced Ca2+ release is a general mechanism that most cells use to amplify Ca2+ signals. In heart cells, this mechanism is operated between voltage-gated L-type Ca2+ channels (LCCs) in the plasma membrane and Ca2+ release channels, commonly known as ryanodine receptors, in the sarcoplasmic reticulum. The Ca2+ influx through LCCs traverses a cleft of roughly 12 nm formed by the cell surface and the sarcoplasmic reticulum membrane, and activates adjacent ryanodine receptors to release Ca2+ in the form of Ca2+ sparks. Here we determine the kinetics, fidelity and stoichiometry of coupling between LCCs and ryanodine receptors. We show that the local Ca2+ signal produced by a single opening of an LCC, named a 'Ca2+ sparklet', can trigger about 4-6 ryanodine receptors to generate a Ca2+ spark. The coupling between LCCs and ryanodine receptors is stochastic, as judged by the exponential distribution of the coupling latency. The fraction of sparklets that successfully triggers a spark is less than unity and declines in a use-dependent manner. This optical analysis of single-channel communication affords a powerful means for elucidating Ca2+-signalling mechanisms at the molecular level.  相似文献   

4.
M A Lynch  J M Littleton 《Nature》1983,303(5913):175-176
The inhibitory effect of ethanol on neurotransmitter release has been suggested to be due to either reduced Ca2+ entry or increased removal of free intracellular Ca2+ from the synapse. The use of the Ca2+ ionophore, A23187, to allow direct access of external Ca2+ to the presynaptic interior should help to determine which of these two factors is the more important, as ethanol should inhibit A23187-induced release of transmitter only if increased Ca2+ removal from the synapse is important. Here we show in rat striatal slices that, although 3H-dopamine release evoked by depolarization with 40 mM K+ is inhibited by 50 mM ethanol, the release evoked by A23187 is enhanced by the presence of ethanol in vitro. The results suggest that ethanol reduces depolarization-induced transmitter release by reducing Ca2+ entry to the presynaptic terminal. However, for brain slices taken from rats made tolerant to ethanol, 3H-dopamine release in the absence of ethanol showed altered characteristics; both K+ depolarization and A23187 released a significantly greater fraction of 3H-dopamine from these slices than from controls. Thus tolerance to the inhibitory effect of ethanol on release may develop by a mechanism involving increased sensitivity of the terminal to Ca2+ entry.  相似文献   

5.
M Iino  M Endo 《Nature》1992,360(6399):76-78
The temporal and spatial distribution of increases in intracellular Ca2+ concentration is an important factor in cellular signal transduction. Inositol 1,4,5-trisphosphate (InsP3) plays a key part in agonist-induced Ca2+ release, which can take place abruptly and in a confined space by a mechanism that is not fully understood. Here we analyse the kinetics of InsP3-induced Ca2+ release following flash photolysis of caged InsP3 or caged Ca2+, and demonstrate that Ca(2+)-dependent immediate feedback control is an important determinant of the time course of Ca2+ release. The positive feedback mechanism is also important for the 'loading dependence' of InsP3-induced Ca2+ release. Furthermore, our results support the operation of positive cooperativity in channel opening and feedback control augments the steep InsP3 concentration-Ca2+ release relation. These inherent properties of InsP3-induced Ca2+ release are expected to give rise to temporally abrupt and/or spatially confined Ca2+ release within the cell.  相似文献   

6.
D L Gill  T Ueda  S H Chueh  M W Noel 《Nature》1986,320(6061):461-464
Ca2+ accumulation and release from intracellular organelles is important for Ca2+-signalling events within cells. In a variety of cell types, the active Ca2+-pumping properties of endoplasmic reticulum (ER) have been directly studied using chemically permeabilized cells. The same preparations have been extensively used to study Ca2+ release from ER, in particular, release mediated by the intracellular messenger inositol 1,4,5-trisphosphate (InsP3). So far, these studies and others using microsomal membrane fractions have revealed few mechanistic details of Ca2+ release from ER, although a recent report indicated that InsP3-mediated Ca2+ release from liver microsomes may be dependent on GTP. In contrast to the latter report, we describe here the direct activation of a specific and sensitive guanine nucleotide regulatory mechanism mediating a substantial release of Ca2+ from the ER of cells of the neuronal cell line N1E-115. These data indicate the operation of a major new Ca2+ gating mechanism in ER which is specifically activated by GTP, deactivated by GDP, and which appears to involve a GTP hydrolytic cycle.  相似文献   

7.
Cell signalling requires efficient Ca2+ mobilization from intracellular stores through Ca2+ release channels, as well as predicted counter-movement of ions across the sarcoplasmic/endoplasmic reticulum membrane to balance the transient negative potential generated by Ca2+ release. Ca2+ release channels were cloned more than 15 years ago, whereas the molecular identity of putative counter-ion channels remains unknown. Here we report two TRIC (trimeric intracellular cation) channel subtypes that are differentially expressed on intracellular stores in animal cell types. TRIC subtypes contain three proposed transmembrane segments, and form homo-trimers with a bullet-like structure. Electrophysiological measurements with purified TRIC preparations identify a monovalent cation-selective channel. In TRIC-knockout mice suffering embryonic cardiac failure, mutant cardiac myocytes show severe dysfunction in intracellular Ca2+ handling. The TRIC-deficient skeletal muscle sarcoplasmic reticulum shows reduced K+ permeability, as well as altered Ca2+ 'spark' signalling and voltage-induced Ca2+ release. Therefore, TRIC channels are likely to act as counter-ion channels that function in synchronization with Ca2+ release from intracellular stores.  相似文献   

8.
P Volpe  G Salviati  F Di Virgilio  T Pozzan 《Nature》1985,316(6026):347-349
The sarcoplasmic reticulum of skeletal muscle is a specialized form of endoplasmic reticulum that controls myoplasmic calcium concentration and, therefore, the contraction-relaxation cycle. Ultrastructural studies have shown that the sarcoplasmic reticulum is a continuous but heterogeneous membranous network composed of longitudinal tubules that surround myofibrils and terminal cisternae. These cisternae are junctionally associated, via bridging structures called 'feet', with sarcolemmal invaginations (the transverse tubules) to form the triadic junction. Following transverse tubule depolarization, a signal, transmitted along the triadic junction, triggers Ca2+ release from terminal cisternae, but the mechanism of this coupling is still unknown. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) has recently been shown to mobilize Ca2+ from intracellular stores, referable to endoplasmic reticulum, in a variety of cell types (see ref. 8 for review), including smooth muscle cells of the porcine coronary artery and canine cardiac muscle cells. Here we show that Ins(1,4,5)P3 releases Ca2+ from isolated, purified sarcoplasmic reticulum fractions of rabbit fast-twitch skeletal muscle, the effect being more pronounced on a fraction of terminal cisternae that contains morphologically intact feet structures; and elicits isometric force development in chemically skinned muscle fibres.  相似文献   

9.
D W Hilgemann  D A Nicoll  K D Philipson 《Nature》1991,352(6337):715-718
Na+/Ca2+ exchange is electrogenic and moves one net positive charge per cycle. Although the cardiac exchanger has a three-to-one Na+/Ca2+ stoichiometry, details of the reaction cycle are not well defined. Here we associate Na+ translocation by the cardiac exchanger with positive charge movement in giant membrane patches from cardiac myocytes and oocytes expressing the cloned cardiac Na+/Ca2+ exchanger. The charge movements are initiated by step increments of the cytoplasmic Na+ concentration in the absence of Ca2+. Giant patches from control oocytes lack both steady-state Na+/Ca2+ exchange current (INaCa) and Na(+)-induced charge movements. Charge movements indicate about 400 exchangers per micron 2 in guinea-pig sarcolemma. Fully activated INaCa densities (20-30 microA cm-2) indicate maximum turnover rates of 5,000 s-1. As has been predicted for consecutive exchange models, the apparent ion affinities of steady state INaCa increase as the counterion concentrations are decreased. Consistent with an electroneutral Ca2+ translocation, we find that voltage dependence of INaCa in both directions is lost as Ca2+ concentration is decreased. The principal electrogenic step seems to be at the extracellular end of the Na+ translocation pathway.  相似文献   

10.
Lou X  Scheuss V  Schneggenburger R 《Nature》2005,435(7041):497-501
Neurotransmitter release is triggered by an increase in the cytosolic Ca2+ concentration ([Ca2+]i), but it is unknown whether the Ca2+-sensitivity of vesicle fusion is modulated during synaptic plasticity. We investigated whether the potentiation of neurotransmitter release by phorbol esters, which target presynaptic protein kinase C (PKC)/munc-13 signalling cascades, exerts a direct effect on the Ca2+-sensitivity of vesicle fusion. Using direct presynaptic Ca2+-manipulation and Ca2+ uncaging at a giant presynaptic terminal, the calyx of Held, we show that phorbol esters potentiate transmitter release by increasing the apparent Ca2+-sensitivity of vesicle fusion. Phorbol esters potentiate Ca2+-evoked release as well as the spontaneous release rate. We explain both effects by an increased fusion 'willingness' in a new allosteric model of Ca2+-activation of vesicle fusion. In agreement with an allosteric mechanism, we observe that the classically high Ca2+ cooperativity in triggering vesicle fusion (approximately 4) is gradually reduced below 3 microM [Ca2+]i, reaching a value of <1 at basal [Ca2+]i. Our data indicate that spontaneous transmitter release close to resting [Ca2+]i is a consequence of an intrinsic property of the molecular machinery that mediates synaptic vesicle fusion.  相似文献   

11.
DREAM is a Ca2+-regulated transcriptional repressor   总被引:14,自引:0,他引:14  
Carrión AM  Link WA  Ledo F  Mellström B  Naranjo JR 《Nature》1999,398(6722):80-84
  相似文献   

12.
L Missiaen  H De Smedt  G Droogmans  R Casteels 《Nature》1992,357(6379):599-602
Low concentrations of inositol 1,4,5-trisphosphate (InsP3) evoke a very rapid mobilization of intracellular Ca2+ stores in many cell types, which can be followed by a further, much slower efflux. Two explanations have been suggested for this biphasic release. The first proposes that the Ca2+ stores vary in their sensitivity to InsP3, and each store releases either its entire contents or nothing (all-or-none release); the second proposes instead that the stores are uniformly sensitive to the effects of InsP3, but that they can release only a fraction of their Ca2+ before their sensitivity is somehow attenuated (steady-state release). Experiments using purified InsP3 receptor molecules reconstituted into lipid vesicles have shown heterogeneity of the receptors in their response to InsP3 under conditions in which the total Ca2+ level at both sides of the receptor is held constant. We now report that in permeabilized A7r5 smooth-muscle cells incubated in Ca(2+)-free medium, the amount of 45Ca2+ remaining in the stores after the rapid transient phase of release is independent of their initial Ca2+ levels, indicating that partially depleted stores are less sensitive to InsP3. Moreover, if the stores are reloaded with 40Ca2+ after the first stimulus, reapplication of the same low concentration of InsP3 will release further 45Ca2+. This recovery of InsP3 sensitivity is almost complete. Under these conditions, Ca2+ release must thus occur by a steady-state mechanism, in which the decreasing Ca2+ content of the stores slows down further release.  相似文献   

13.
Non-uniform Ca2+ buffer distribution in a nerve cell body   总被引:4,自引:0,他引:4  
D Tillotson  A L Gorman 《Nature》1980,286(5775):816-817
In nerve cells, Ca2+ influx through voltage-dependent channels in the membrane causes a transient rise in the intracellular, free Ca2+ concentration. Such changes have been shown to be important for the release of transmitter at the axon terminal and for the control of the movement of ions through channels in the soma membrane. The transient behaviour of the rise in Ca2+ concentration can, in part, be explained by the presence of sequestering systems in the cell which tend to limit the magnitude and duration of changes in internal Ca2+ (refs 7--10). It is possible that systems involved in buffering changes in internal Ca2+ are not distributed uniformly throughout the cell. This is particularly likely in the cell body, where a significant portion of the cytoplasm is occupied by the nucleus, whose buffering capacity may differ from that of other cellular regions. We report here that in the soma of a molluscan pacemaker neurone, the machinery responsible for short-term buffering of Ca2+ ions is localized near the inner surface of the plasma membrane.  相似文献   

14.
R Rizzuto  A W Simpson  M Brini  T Pozzan 《Nature》1992,358(6384):325-327
Introduction of Ca2+ indicators (photoproteins, fluorescent dyes) that can be trapped in the cytosolic compartment of living cells has yielded major advances in our knowledge of Ca2+ homeostasis. Ca2+ however regulates functions not only in the cytosol but also within various organelles where indicators have not yet been specifically targeted. Here we present a novel procedure by which the free Ca2+ concentration of mitochondria, [Ca2+]m, can be monitored continuously at rest and during stimulation. The complementary DNA for the Ca2+ sensitive photoprotein aequorin was fused in frame with that encoding a mitochondrial presequence. The hybrid cDNA was transfected into bovine endothelial cells and stable clones were obtained expressing variable amounts of mitochondrially targeted apoaequorin. The functional photoprotein could be reconstituted in intact cells by incubation with purified coelenterazine and [Ca2+]m could thus be monitored in situ. This allowed the unprecedented direct demonstration that agonist-stimulated elevations of cytosolic free Ca2+, [Ca2+]i, (measured in parallel with Fura-2) evoke rapid and transient increases of [Ca2+]m, which can be prevented by pretreatment with a mitochondrial uncoupler. The possibility of targeting aequorin to cellular organelles not only offers a new and powerful method for studying aspects of Ca2+ homeostasis that up to now could not be directly approached, but might also be used in the future as a tool to report in situ a variety of apparently unrelated phenomena of wide biological interest.  相似文献   

15.
Cancela JM  Churchill GC  Galione A 《Nature》1999,398(6722):74-76
Many hormones and neurotransmitters evoke Ca2+ release from intracellular stores, often triggering agonist-specific signatures of intracellular Ca2+ concentration. Inositol trisphosphate (InsP3) and cyclic adenosine 5'-diphosphate-ribose (cADPR) are established Ca2+-mobilizing messengers that activate Ca2+ release through intracellular InsP3 and ryanodine receptors, respectively. However, in pancreatic acinar cells, neither messenger can explain the complex pattern of Ca2+ signals triggered by the secretory hormone cholecystokinin (CCK). We show here that the Ca2+-mobilizing molecule nicotinic acid adenine dinucleotide phosphate (NAADP), an endogenous metabolite of beta-NADP, triggers a Ca2+ response that varies from short-lasting Ca2+ spikes to a complex mixture of short-lasting (1-2s) and long-lasting (0.2-1 min) Ca2+ spikes. Cells were significantly more sensitive to NAADP than to either cADPR or InsP3, whereas higher concentrations of NAADP selectively inactivated CCK-evoked Ca2+ signals in pancreatic acinar cells, indicating that NAADP may function as an intracellular messenger in mammalian cells.  相似文献   

16.
Low Ca2+ impedes cross-bridge detachment in chemically skinned Taenia coli   总被引:3,自引:0,他引:3  
K Güth  J Junge 《Nature》1982,300(5894):775-776
Muscle force is generated by cycling cross-bridges between actin and myosin filaments. In smooth muscle, cyclic attachment and detachment of cross-bridges is thought to be induced by a Ca2+- and calmodulin-dependent myosin light chain kinase which phosphorylates myosin. The relaxation that occurs after Ca2+ removal is usually ascribed to dephosphorylation of myosin by a phosphatase as non-phosphorylated myosin is unable to form force-generating criss-bridges. Recently, Dillon et al. claimed, however, that dephosphorylation of attached cross-bridges may impede cross-bridge detachment, thus forming so-called 'latch bridges'. Here we present evidence that after a Ca2+- and calmodulin-induced contraction of chemically skinned guinea pig Taenia coli, the rapid removal of Ca2+ impedes the detachment of the myosin cross-bridges from the actin filament; force can then be maintained without energy consumption. The extremely slowly detaching cross-bridges which maintain the force after Ca2+ removal may indeed correspond to the 'latch bridges' mentioned above.  相似文献   

17.
Control of Ca2+ in rod outer segment disks by light and cyclic GMP   总被引:4,自引:0,他引:4  
J S George  W A Hagins 《Nature》1983,303(5915):344-348
Photons absorbed in vertebrate rods and cones probably cause electrochemical changes at the photoreceptor plasma membrane by changing the cytoplasmic concentration of a diffusible transmitter substance, reducing the Na+ current flowing into the outer segment of the cell in the dark, to produce the observed membrane hyperpolarization that is the initial excitatory response. Cyclic GMP has been proposed as the transmitter because a light-activated cyclic GMP phosphodiesterase (PDE) has been found in rod disk membranes and because intracellularly injected cyclic GMP reduces rod membrane potentials. Free Ca2+ has also been proposed because increasing external [Ca2+] quickly and reversibly reduces the dark current and divalent cationophores increase the Ca2+ sensitivity. Ca2+ efflux from rod outer segments (ROS) of intact retinas occurs simultaneously with light responses. Vesicles prepared from ROS disk membranes become more permeable on illumination, releasing trapped ions or molecules, but intact outer segment disks have not previously been found to store sufficient Ca2+ in darkness and to release enough in light to meet the theoretical requirements for control of the dark current by varying cytoplasmic Ca2+ (refs 14-18). We now report experiments that show the required Ca2+ storage and release from rod disk membranes suspended in media containing high-energy phosphate esters and electrolytes approximating the cytoplasmic composition of live rod cells. Cyclic GMP stimulates Ca2+ uptake by ROS disks in such media.  相似文献   

18.
Schumacher MA  Rivard AF  Bächinger HP  Adelman JP 《Nature》2001,410(6832):1120-1124
Small-conductance Ca2+-activated K+ channels (SK channels) are independent of voltage and gated solely by intracellular Ca2+. These membrane channels are heteromeric complexes that comprise pore-forming alpha-subunits and the Ca2+-binding protein calmodulin (CaM). CaM binds to the SK channel through the CaM-binding domain (CaMBD), which is located in an intracellular region of the alpha-subunit immediately carboxy-terminal to the pore. Channel opening is triggered when Ca2+ binds the EF hands in the N-lobe of CaM. Here we report the 1.60 A crystal structure of the SK channel CaMBD/Ca2+/CaM complex. The CaMBD forms an elongated dimer with a CaM molecule bound at each end; each CaM wraps around three alpha-helices, two from one CaMBD subunit and one from the other. As only the CaM N-lobe has bound Ca2+, the structure provides a view of both calcium-dependent and -independent CaM/protein interactions. Together with biochemical data, the structure suggests a possible gating mechanism for the SK channel.  相似文献   

19.
To investigate the effect of doxorubicin(DOX) on gene expression of the myocardial sarcoplasmic reticulum (SR)Ca^2 transport proteins and the mechanism of taurine(Tau) protecting cardiac muscle cells, 9 rabbits were injected with DOX , 8 rabbits with DOX and Tau, and 9 rabbits with normal saline. Cardiac function , concentration of calcium in cardiomyocytes ( Myo [ Ca^2 ]i ), activity of SR Ca^2 -ATPase (SERCA2a) , level of SERCA2a mRNA and Ca^2 released channels(RYR2) mRNA were detected. The left ventricle tissues were observed by electron microscopy. The results showed that cardiac index, left ventricular systolic pressure, activity of SR Ca^2 -ATPase and level of SERCA2a mRNA decreased , while Myo[ Ca^2 ]i increased in DOX-treated rabbits. DOX could not affect the level of RYR2 mRNA. Tau intervention could alleviate the increase of left ventricular diastolic pressure, Myo[ Ca^2 ] i and the decrease of SERCA2a mRNA induced by doxorubicin. Tile results suggested that downregulation of SERCA2a gene expression was an important mechanism of DOX-induced cardiomyopathy and that Tau could partially improve the heart function by reducing calcium overload and alleviating downregulation of SERCA2a mRNA.  相似文献   

20.
M Hirata  T Sasaguri  T Hamachi  T Hashimoto  M Kukita  T Koga 《Nature》1985,317(6039):723-725
D-myo-inositol-1,4,5-trisphosphate (InsP3) is a putative intracellular second messenger for the mobilization of Ca2+ from intracellular stores, in particular, the endoplasmic reticulum. Specific binding sites on the endoplasmic reticulum may participate in the InsP3-induced release of Ca2+ from the Ca2+ pool. To examine the specific binding sites on the endoplasmic reticulum, we synthesized an arylazide derivative of InsP3 for photoaffinity labelling; InsP3 coupled to p-azidobenzoic acid (InsP3-pAB) using N,N'-carbonyldiimidazole (CDI) was obtained at a 9-11% yield. Here, we report that InsP3-pAB, but not an arylazide derivative of inositol-1,4-bisphophate (Ins(1,4)P2), causes the irreversible inhibition of InsP3-induced release of Ca2+ in saponin-permeabilized photo-irradiated macrophages. The irreversible inhibition by InsP3-pAB after photo-irradiation was prevented by a 10-fold excess of unmodified InsP3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号