首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
采用溶胶凝胶法合成了LiMn2O4及其表面Bi修饰材料, 通过聚丙烯酸(PAA)螯合的Bi(NO3)3溶液浸泡LiMn2O4以及煅烧合成了PAA-Bi/LiMn2O4材料. 采用TGA、XRD、SEM、循环伏安和充放电循环研究了3种锂离子电池正极材料的综合性能. 研究表明,Bi修饰的2种LiMn2O4材料电池的循环稳定性均提高. PAA浸泡-煅烧法的优点是避免了杂质Bi2Mn4O10的形成,PAA-Bi/LiMn2O4的首次放电容量损失较少,同时电池的循环稳定性大大提高.  相似文献   

2.
锰酸锂电池循环性能的改进   总被引:1,自引:1,他引:0  
采用商品化的LiMn2O4和石墨作为正负极材料制作锰酸锂电池,并利用XRD和SEM表征LiMn2O4原料的结构和形貌.研究不同正负极料量比对电池性能的影响,对各个料量比电池循环之后的正极进行XRD分析.研究结果表明:LiMn2O4容量随着正负极料量比的增大而增大,最高达到106 mA·h/g,而电池的循环性能随着正负极料量比的减小而改善,正负极料量比为2.35时,170次循环后电池容量保持率为87.3%,并且在循环过程中,电池循环性能随着循环的进行而改善;循环后的LiMn2O4晶胞发生收缩,LiMn2O4的结构稳定性提高,并且其晶胞收缩程度随着正负极料量比的减小而增加.  相似文献   

3.
通过聚甲基丙烯酸甲酯(PMMA)胶晶模板法制备尖晶石型LiMn2O4材料,并探讨焙烧温度对材料性能的影响.运用热重分析(TG)、X线衍射(XRD)、扫描电镜(SEM)、充放电测试和循环伏安测试等方法对LiMn2O4样品的结构、形貌以及电化学性能进行表征和测试.研究结果表明:在不同温度下制备的LiMn2O4样品均具有较好的尖晶石型结构,且粒径分布均匀:在700℃时制备的LiMn2O4样品(S-700)具有最佳的电化学性能,在3.0~4.4 V时,0.2C倍率首次放电比容量为130.9 mA·h/g; 0.5C倍率首次放电比容量为126.4 mA·h/g,50次循环之后容量仍有102.7 mA·h/g,具有良好的循环稳定性.  相似文献   

4.
采用溶胶-凝胶法合成了锂锰尖晶石正极材料LiMn2-2xCoxCrxO3.95F0.05(x=0.05、0.1),并用沉淀法在其表面包覆2%的TiO2.XRD和ESEM分析表明掺杂样品以及掺杂之后再包覆TiO2的样品依然保持尖晶石结构,样品颗粒大小分布都较均匀.电化学性能测试显示LiMn2O4的首次放电容量为124.4 mA.h/g,50次循环后容量损失43.2%,而多元掺杂样品LiMn1.9Co0.05Cr0.05O3.95F0.05和LiMn1.8Co0.1Cr0.1O3.95F0.05的初始放电容量分别为114.7和103.4 mA.h/g,100次循环后容量损失为9.7%和4.1%.LiMn1.9Co0.05Cr0.05O3.95F0.05包覆2%TiO2和LiMn1.8Co0.1Cr0.1O3.95F0.05包覆2%TiO2样品的初始放电容量为109.3和96.6 mA.h/g,100次循环后容量损失为5.0%和3.5%,经过改性后材料的循环性能得到改善.  相似文献   

5.
利用高温固相法制备了尖晶石型LiMn2O4、LiMn1.925Co0.075O4、LiMn1.925Co0.0375Ti0.0375O4、LiMn1.925Co0.025Ti0.025Sn0.025O4锂离子电池正极材料,并用XRD、充放电测试、循环伏安、电化学阻抗测试等研究了其结构和电化学性能.结果表明:掺杂样品均为单一尖晶石结构,在0.2C和3.0-4.2V条件下恒流充放电,发现掺杂后材料的循环性能有很大改善,其中LiMn1.925Co0.025Ti0.025Sn0.025O4具有较高的放电容量,50次循环后容量衰仅为7.97%.活性物质在不同的电位下具有不同的电化学特性,电化学阻抗谱明显不同,并对其进行了解释.  相似文献   

6.
以CrF3为掺杂原料,采用高温固相制备了锂离子电池正极材料尖晶石LiMn2-xCrxO4-3xF3x.采用XRD、SEM和充放电能实验对其结构和性能进行了表征.实验结果表明,阴阳离子共掺杂对尖晶石LiMn2O4的循环性能有一定的改善.其中LiMn2-xCrxO4-3xF3x(x=0.10)室温下循环20次后放电比容量衰减率为首次容量(120.58 mAh/g)的4.73%.  相似文献   

7.
研究了以Li4Ti5O12为负极,分别以LiCo0.5Ni0.5Mn0.5O2,LiMn2O4或LiFePO4为正极的锂电池体系. 先筛选不同厂家的正负极材料,然后再匹配成电池做循环性能研究. 测试表明,经筛选的LiCo0.5Ni0.5Mn0.5O2,LiMn2O4与LiFePO4三种材料分别与Li4Ti5O12组成电池的初始容量分别为963、931、960 mAh;500次充放电循环后容量保持率分别为96.56%、87.69%、98.1%. 其中LiCo0.5Ni0.5Mn0.5O2体系的初始容量最高,LiFePO4体系的循环性能最好. 3种不同正极材料的钛酸锂锂离子电池在85 ℃环境下搁置4 h,电池形变少于5%.  相似文献   

8.
采用溶胶-凝胶并结合热处理工艺制备纳米LiMn2O4粉体,利用热重-差热分析,X射线衍射,透射电镜,循环伏安,充放电测试等方法对前驱体的热分解行为、粉体的结构、形貌及电化学性质进行了表征.结果表明:直接以聚丙烯酸(PAA)为螯合剂合成了稳定的溶胶和凝胶, PAA与金属离子摩尔比为0.3:1时,获得凝胶在烧结过程中产生的燃烧热促进了尖晶石LiMn2O4的形成,避免杂相Mn2O3的产生.随着烧结温度的升高,LiMn2O4颗粒粒径逐渐增大,结晶度提高,晶体生长更加完整.其中,750°C烧结8 h获得了由纳米粒子构成、分布均匀、形貌规整、结构稳定的LiMn2O4粉体,首次放电比容量可达135 mAh/g,20次循环后比容量仍有124 mAh/g,具有良好的充放电循环性能以及较高的充放电效率.  相似文献   

9.
尖晶石型LiMn2O4电池材料的研究现状   总被引:2,自引:0,他引:2  
对尖晶石型LiMn2O4电池正极材料的制备和性能,以及掺杂、表面修饰等的研究现状做了简要评述,分析了对LiMn2O4容量衰减的改善及循环性能提高的影响因素.  相似文献   

10.
LiMn2O4由于电压高、价格便宜、对环境基本无污染而成为最有希望的备选正极材料之一.大量实验研究表明,制备方法和制备条件的不同会在很大程度上影响LiMn2O4材料的性能.以Mn(CH3COO)2.4H2O和Na2S2O8为原料,采用低温水热法制得纳米晶前驱体β-MnO2粉末,然后将前驱体β-MnO2粉末与LiOH.H2O混合后煅烧即可制得纳米晶LiMn2O4.结果表明,LiMn2O4粉末晶化程度高,粒度分布较窄,平均粒径约在250nm,用所得的粉末样品进行电化学性能侧试,其首次放电比容量可达130.5,mA.h/g,循环性能也较好.  相似文献   

11.
以醋酸锂、醋酸锰和硝酸银为原料,采用柠檬酸络合燃烧法制备LiMn2O4/Ag复合材料.通过X射线衍射、扫描电子显微镜、恒电流充放电以及交流阻抗技术分析和检测合成产物的物相、形貌及电化学性能.结果表明:LiMn2O4/Ag复合材料由LiMn2O4和金属Ag组成,银均匀地分布在LiMn2O4颗粒中;与LiMn2O4相比,LiMn2O4/Ag复合材料具有更高的比容量、更高的库伦效率和更低的极化;Ag的添加可提高LiMn2O4的循环性能,尤其是高倍率充放电循环性能.  相似文献   

12.
Improvement of the energy density and power density of the lithium-ion batteries is urgently required with the rapid development of electric vehicles and portable electronic devices. The spinel LiMn2O4 is one of the most promising cathode materials due to its low cost, nontoxicity, and improved safety compared with commercial LiCoO2. Developing nanostructured electrode materials represents one of the most attractive strategies to dramatically enhance battery performance, such as capacity, rate capability and cycling life. Currently, extensive efforts have been devoted to developing nanostructured LiMn2O4 and LiMn2O4/carbon nanocomposites to further improve the rate capability of lithium-ion batteries for high-power applications. In this paper, recent progress in developing nanostructured LiMn2O4 and LiMn2O4/carbon nanocomposites is reviewed, and the benefits to the electrochemical performance of LiMn2O4-based cathodes by using these electrode materials are also discussed.  相似文献   

13.
首次采用基于复合络合剂柠檬酸和β-环糊精的溶胶凝胶法制备了尖晶石型锰酸锂,并研究了煅烧温度对材料电化学性能的影响。电化学性能表明,700℃煅烧制备的材料具有优异的倍率和循环性能。在3C电流下此材料的首次和第200次放电比容量分别为102mAh/g和90.8mAh/g,容量保持率为89%。  相似文献   

14.
以商品化活性炭为原料,在1mol/L盐酸环境下采用原位聚合法制备了聚苯胺/活性炭复合材料(PANI/C),复合材料中聚苯胺的质量分数为46.4%.用循环伏安、交流阻抗、恒流充放电测试等方法考察比较了新材料与原活性炭在1mol/L H2SO4溶液中的电容性能.结果表明,新材料的比容量和大电流充放电性能均优于碳材料.3.0mA/cm^2电流密度下,复合材料电极比容量高达448.7F/g,比原碳材料提高60%.  相似文献   

15.
研究了不对称超级电容器和碳/碳超级电容器在化成前后的阻抗谱变化规律.由锰酸锂(LiMn2O4,LMO)和活性碳(activated carbon,AC)组成的不对称超级电容器经过化成,电容器的高频(10 kHz)交流阻抗没有明显变化,而低频电容明显提高.不对称超级电容器由于采用电池型电极材料作为其中一极,使得其阻抗特性与碳/碳超级电容器的阻抗特性不同.通过对化成前后的超级电容器交流阻抗谱进行分析,利用复数电容和复数功率两种形式讨论了不对称超级电容器的阻抗变化规律,确定了不对称超级电容器的时间常数;通过碳/碳超级电容器与不对称超级电容器的阻抗行为的比较,说明电池型电极的引入对电容器的频率响应特性造成的影响.  相似文献   

16.
采用水热合成和煅烧制备氧化钴/碳(Co3O4/C)复合材料,通过SEM、XRD、N2吸附实验等对该材料进行表征.制备的Co3O4/C复合材料为5μm大小,孔径约为30nm的多孔球形结构.在6mol/L的氢氧化钾溶液中进行电化学测试.结果表明,Co3O4/C复合材料具有良好的电容性能.在电流密度为1A/g时,比电容为143F/g.此外,Co3O4/C复合材料还表现出良好的循环稳定性,在1A/g的电流密度下,充放电循环1000次后,比电容保持率为77.8%.  相似文献   

17.
采用高温固相浸渍法合成了多元复合掺杂的尖晶石锰酸锂正极材料LiCo0.02La0.01Mn1.97O3.98Cl0.02.采用X衍射分析仪、扫描电镜、马尔文激光粒径分析仪、电化学工作站以及充放电分析仪等设备表征了材料的电化学性能与特性.XRD表明所合成的材料具有良好的尖晶石型结构特征,所掺杂是元素Co,La分别占据了元素Mn的位置,元素Cl占据了元素O的位置.合成材料LiCo0.02La0.01Mn1.97O3.98Cl0.02比材料LiMn2O4有更好的电化学特性,150次循环后的比容量保持率在91.7%.  相似文献   

18.
采用溶胶-凝胶法和化学沉积法制备了Li4Ti4.75Cu0.25O12/SnO2复合活性材料。通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试对材料进行结构、形貌表征及电化学性能测试。结果表明:Li4Ti4.75Cu0.25O12/SnO2复合活性物质能够进一步改善倍率性能的同时,循环性能也得到了很好的保证。当电压在1~3 V时,电流密度为1C倍率条件下,Li4Ti4.75Cu0.25O12/SnO2复合材料首次放电比容量高达202.55 m A·h/g。经过50次循环后,容量仍保持在202.51 m A·h/g,容量保持率高达99.98%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号