首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
K Yamada  A Goto  M Ishii  M Yoshioka  T Sugimoto 《Experientia》1990,46(10):1041-1043
The effects of adrenalectomy or nephrectomy, carried out one hour previously, on the levels of endogenous digitalis-like factors were determined in rat plasma. Factors were assayed by digoxin-like immunoreactivity and direct Na+,K(+)-ATPase inhibitory activity. Digoxin-like immunoreactivity significantly decreased one hour after bilateral ablation of adrenals, while Na+,K(+)-ATPase inhibitory activity remained unaltered. There were no changes in either activity one hour after bilateral nephrectomy. These results suggest that digoxin-like immunoreactivity may be derived from the adrenal gland or under adrenal control and the major substances detected by digoxin-like immunoreactivity and direct Na+,K(+)-ATPase inhibitory activity may be different.  相似文献   

2.
The lack of Na+,K+-ATPase expression in intercalated cells (IC) is an intriguing condition due to its fundamental role in cellular homeostasis. In order to better understand this question we compared the activities of Na+,K+-ATPase and Na+-ATPase in two MDCK cell clones: the C11, with IC characteristics, and the C7, with principal cells (PC) characteristics. The Na+,K+-ATPase activity found in C11 cells is far lower than in C7 cells and the expression of its β-subunit is similar in both cells. On the other hand, a subset of C11 without α-subunit expression has been found. In C11 cells the Na+-ATPase activity is higher than that of the Na+,K+-ATPase, and it is increased by medium alkalinization, suggesting that it could account for the cellular Na+-homeostasis. Although further studies are necessary for a better understanding of these findings, the presence of Na+-ATPase may explain the adequate survival of cells that lack Na+,K+-ATPase. Received 09 July 2008; received after revision 03 August 2008; accepted 12 August 2008  相似文献   

3.
Summary Na+, K+-ATPase inhibitors extracted from plasma of healthy human subjects displaced3H-ouabain binding to human erythrocytes and inhibited the Na+ efflux catalyzed by the Na+, K+-pump and unexpectedly the Na+, K+-cotransport system without alteration of the Na+, Na+-exchange or the Na+ passive permeability. This suggests the presence in healthy human plasma of endogenous factors with ouabain-like and furosemide-like activities.Acknowledgments. We are indebted to Dr M. A. Devynck for her advice on chemical measurements and to Dr R. P. Garay for his help with flux measurements  相似文献   

4.
Summary (Na++K+)-ATPase activity was higher in preparations from the ileum ofGlossina mortisans than in those from the rectum. This result suggests that the ileum as well as the rectum, may play a role in osmoregulation in the tsetse fly.  相似文献   

5.
Summary Exogenous cyclic AMP (cAMP) inhibits the Na+, K+-cotransport system and stimulates the Na+, K+-pump and Na+, Ca2+ exchange in mouse macrophages. These effects are enhanced by inhibition of phosphodiesterase with methylisobutylxanthine (MIX). MIX alone showed little or no effect. A similar response was observed after stimulation of endogenous production of cAMP by isoproterenol.  相似文献   

6.
The level of malondialdehyde (MDA), an index of lipid peroxidation, and the antioxidants superoxide dismutase (SOD) and glutathione (GSH), as well as the activity of Na+, K+-ATPase, were assessed in whole rat brain after immobilization, anemic hypoxia (NaNO2) and 72 h starvation. The effect of these stressors on plasma glucose and corticosterone levels was also observed. Hypoxia and starvation stimulated the lipidj peroxide formation in braini as indicated by an increase in the level of MDA, being higher after starvation than hypoxia. Brain SOD activity was also increased in response to hypoxia and starvation while GSH content was only diminished ini hypoxia. However, neither MDA nor antioxidants were affected by immobilization. On the other hand, the activity of brain Na+, K+-ATPase was significantly increased by immobilization and hypoxia but decreased in starvation. A similar pattern of change was also observed in plasma glucose and corticosterone levels in response to these stressors. These results elucidate differences in the biochemical response of animals towards various types of stress, with increased lipid peroxide formation in hypoxia and starvation.  相似文献   

7.
Summary There is a difference in phospholipid composition of cardiac (Na++K+)-ATPase preparations between species which are sensitive to ouabain and those which are not. Sphingomyelin is higher and phosphatidylcholine is lower in the enzymes from sensitive species than in those from insensitive ones. Lysophosphatidylcholine is detectable only in the latter preparations.  相似文献   

8.
Summary Araplysillins-I and-II, two novel dibromotyrosine derivatives, were isolated fromPsammaplysilla arabica and their structure was elucidated by spectroscopic methods. They proved to be inhibitors of Na+/K+ ATPase and to have antimicrobial activity.  相似文献   

9.
Selective pharmacological Na+/H+ exchange (NHE) inhibitors were used to identify functional NHE isoforms in human small intestinal enterocytes (Caco-2) and to distinguish between direct and indirect effects on transport via the intestinal di/tripeptide transporter hPepT1. The relative potencies of these inhibitors to inhibit 22Na+ influx identifies NHE3 and NHE1 as the apical and basolateral NHE isoforms. The Na+-dependent (NHE3-sensitive) component of apical dipeptide ([14C] Gly-Sar) uptake was inhibited by the selective NHE inhibitors with the same order of potency observed for inhibition of apical 22Na+ uptake. However, 5-(N-ethyl-N-isopropyl) amiloride (EIPA) also reduced [14C]Gly-Sar uptake in the absence of Na+ and this inhibition was concentration and pH (maximal at pH 5.5) dependent. NHE3 inhibition by S1611 and S3226 modulates dipeptide uptake indirectly by reducing the transapical driving force (H+ electrochemical gradient). EIPA (at 100 μM) has similar effects, but at higher concentrations (>200 μM) also has direct inhibitory effects on hPepT1.Received 28 February 2005; received after revision 20 April 2005; accepted 20 May 2005  相似文献   

10.
Activation of δ-opioid receptors (DOR) attenuates anoxic K+ leakage and protects cortical neurons from anoxic insults by inhibiting Na+ influx. It is unknown, however, which pathway(s) that mediates the Na+ influx is the target of DOR signal. In the present work, we found that, in the cortex, (1) DOR protection was largely dependent on the inhibition of anoxic Na+ influxes mediated by voltage-gated Na+ channels; (2) DOR activation inhibited Na+ influx mediated by ionotropic glutamate N-methyl-D-aspartate (NMDA) receptors, but not that by non-NMDA receptors, although both played a role in anoxic K+ derangement; and (3) DOR activation had little effect on Na+/Ca2+ exchanger-based response to anoxia. We conclude that DOR activation attenuates anoxic K+ derangement by restricting Na+ influx mediated by Na+ channels and NMDA receptors, and that non-NMDA receptors and Na+/Ca2+ exchangers, although involved in anoxic K+ derangement in certain degrees, are less likely the targets of DOR signal. Received 26 November 2008; received after revision 26 December 2008; accepted 13 January 2009  相似文献   

11.
Summary Juvenile hormone (JH) is known to act on the membranes of the follicle cells ofRhodnius, activating a specific Na+, K+-ATPase. This leads to a decrease in volume of the cells and the appearance of spaces between them (patency). The addition of an inhibitor of protein kinase C, 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), to the medium in vitro inhibits the action of JH on the follicle cells. PDBU (phorbol-12,13-dibutyrate) mimics the action of JH in vitro and the response of the follicle cells to, PDBU is blocked by ouabain. It is concluded that the activation of protein kinase C is a required step in the chain of events leading to activation of the JH-dependent ATPase and set in train by the binding of JH to the membrane.  相似文献   

12.
Increasing evidence demonstrates that Na+, K+-ATPase plays an important role in pulmonary inflammation, but the mechanism remains largely unknown. In this study, we used cardiotonic steroids as Na+, K+-ATPase inhibitors to explore the possible involvement of Na+, K+-ATPase in pulmonary epithelial inflammation. The results demonstrated that mice after ouabain inhalation developed cyclooxygenase-2-dependent acute lung inflammation. The in vitro experiments further confirmed that Na+, K+-ATPase inhibitors significantly stimulated cyclooxygenase-2 expression in lung epithelial cells of human or murine origin, the process of which was participated by multiple cis-elements and trans-acting factors. Most importantly, we first described here that Na+, K+-ATPase inhibitors could evoke a significant Hu antigen R nuclear export in lung epithelial cells, which stabilized cyclooxygenase-2 mRNA by binding with a proximal AU-rich element within its 3′-untranslated region. In conclusion, HuR-mediated mRNA stabilization opens new avenues in understanding the importance of Na+, K+-ATPase, as well as its inhibitors in inflammation.  相似文献   

13.
The Na+,K+-ATPase, or sodium pump, is well known for its role in ion transport across the plasma membrane of animal cells. It carries out the transport of Na+ ions out of the cell and of K+ ions into the cell and thus maintains electrolyte and fluid balance. In addition to the fundamental ion-pumping function of the Na+,K+-ATPase, recent work has suggested additional roles for Na+,K+-ATPase in signal transduction and biomembrane structure. Several signaling pathways have been found to involve Na+,K+-ATPase, which serves as a docking station for a fast-growing number of protein interaction partners. In this review, we focus on Na+,K+-ATPase as a signal transducer, but also briefly discuss other Na+,K+-ATPase protein–protein interactions, providing a comprehensive overview of the diverse signaling functions ascribed to this well-known enzyme.  相似文献   

14.
Summary The effect of mycotoxin (T-2 toxin) on catecholamines and Na+, K+-ATPase activities in rat epididymis has been evaluated. Dopamine and norepinephrine levels were significantly elevated in the caput and corpus regions whereas their levels remained unchanged in the caudal part of the epididymis. Na+, K+-ATPase activity was significantly increased in all the three regions of rat epididymis as a result of the toxin treatment. These changes may suggest an adverse effect on epididymal functions in rats.  相似文献   

15.
Summary Na+, K+-adenosinetriphosphatase (Na+, K+-ATPase) activity was decreased in liver plasma membranes from rats in which cholestasis had been induced by i.v. administration of sodium taurolithocholate (5 moles/100 g b. wt). Incubation of liver plasma membranes with taurolithocholate (10–1300 M) caused significant and dose dependent reductions of Na+, K+-ATPase activity at taurolithocholate concentrations above 100 M. These findings lend support to the hypothesis that cholestasis induced by monohydroxy bile acids is at least partially the result of an inhibition of hepatic Na+, K+-ATPase activity.This work was supported by the Swiss National Science Foundation.The authors thank Mr H. Sägesser and Miss B. Schütz for technical assistance.  相似文献   

16.
Summary The activity of (Na++K+)-ATPase and acetylcholine esterase were folloed in rat brain cerebral cortex, caudate, thalamus, hippocampus and medulla after i.v. administration of physostigmine. Both enzymes were found to be inhibited in a dose-dependent manner. The most pronounced inhibition of (Na++K+)-ATPase was found in caudate. where the highest activity of acetylcholine esterase is found.These studies were supported by a grant from the Union of Science of Republic Serbia, No. 40404-14.  相似文献   

17.
Summary The (Na++K+)- and Mg2+-dependent ATPase distribution in several brain areas has been investigated in Quaking mutant mice characterized by myelin deficiency. A marked decrease of (Na++K+)-ATPase activity has been found in limbic structures, hypothalamus and cerebellum. The Mg2+-dependent activity did not change. A possible involvement of the impairment of the (Na++K+)-ATPase activity in the seizure susceptibility of this mice is discussed.Chargée de Recherche au CNRS.  相似文献   

18.
Summary With a suitable modification of the Farquhar and Palade technique the Na++K+-ATPase activity in guineapig thyroid is demonstrated. The addition of c-AMP (5×10–6 M or 1.5×10–5 M) to the incubation media produced an apparent intensification of the Na++K+-ATPase activity in the thyroid.This work was supported by a grant from ZMNU of Serbia.  相似文献   

19.
Summary The K+ conductance inMyxicola giant axons activates in two phases which are pharmacologically separable. The fast phase of K+ activation is specifically inhibited by 4-aminopyridine and by the substitution of D2O for H2O. We suggestMyxicola giant axons, like the amphibian node of Ranvier, may possess more than one variety of K+ channel.  相似文献   

20.
Proinsulin-connecting peptide (C-peptide) exerts physiological effects partially via stimulation of Na+, K+-ATPase. We determined the molecular mechanism by which C-peptide stimulates Na+, K+-ATPase in primary human renal tubular cells (HRTCs). Incubation of the cells with 5 nM human C-peptide at 37°C for 10 min stimulated 86Rb+ uptake by 40% (p<0.01). The carboxy-terminal pentapeptide was found to elicit 57% of the activity of the intact molecule. In parallel with ouabain-sensitive 86Rb+ uptake, C-peptide increased subunit phosphorylation and basolateral membrane (BLM) abundance of the Na+, K+-ATPase 1 and 1 subunits. The increase in BLM abundance of the Na+, K+-ATPase 1 and 1 subunits was accompanied by depletion of 1 and 1 subunits from the endosomal compartments. C-peptide action on Na+, K+-ATPase was ERK1/2-dependent in HRTCs. C-peptide-stimulated Na+, K+-ATPase activation, phosphorylation of 1-subunit and translocation of 1 and 1 subunits to the BLM were abolished by a MEK1/2 inhibitor (20 M PD98059). C-peptide stimulation of 86Rb+ uptake was also abolished by preincubation of HRTCs with an inhibitor of PKC (1 M GF109203X). C-peptide stimulated phosphorylation of human Na+, K+-ATPase subunit on Thr-Pro amino acid motifs, which form specific ERK substrates. In conclusion, C-peptide stimulates sodium pump activity via ERK1/2-induced phosphorylation of Thr residues on the subunit of Na+, K+-ATPase.Received 15 June 2004; received after revision 14 September 2004; accepted 14 September 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号