首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution properties of the magnetic field in magnetotail current sheets have been explored statistically with the magnetic measurement data of the Cluster mission from June to November of the years 2001–2005. It is found that, on average, the strength of the magnetic field and its Bz component in the current sheet are weaker in the region close to midnight but stronger near the dawnside and duskside flanks, which implies that, in general, a thinner current sheet occurs near midnight and thicker ones near both flanks. The occurrence of tail current sheet flapping is higher on both flanks than in the midnight region, although it is most frequent in the dawn flank. Current sheets with a negative Bz component or a strong By component have a higher probability of occurring at magnetic local times of 21:00–01:00, indicating that magnetic activity, e.g. magnetic reconnection and current disruption occur more frequently there. Statistically, the probability distributions of the By component and the tilt angle of magnetic field lines in the current sheet are approximately normal distributions, and the occurrence probability of the flattened current sheet is about one third that of the normal current sheet. The magnetic field and Bz component in the current sheet mainly vary from 1 nT to 10 nT. The By component in the tail central current sheet is on average twice the IMF By at 1 AU.  相似文献   

2.
Magnetic reconnection in a current sheet converts magnetic energy into particle energy, a process that is important in many laboratory, space and astrophysical contexts. It is not known at present whether reconnection is fundamentally a process that can occur over an extended region in space or whether it is patchy and unpredictable in nature. Frequent reports of small-scale flux ropes and flow channels associated with reconnection in the Earth's magnetosphere raise the possibility that reconnection is intrinsically patchy, with each reconnection X-line (the line along which oppositely directed magnetic field lines reconnect) extending at most a few Earth radii (R(E)), even though the associated current sheets span many tens or hundreds of R(E). Here we report three-spacecraft observations of accelerated flow associated with reconnection in a current sheet embedded in the solar wind flow, where the reconnection X-line extended at least 390R(E) (or 2.5 x 10(6) km). Observations of this and 27 similar events imply that reconnection is fundamentally a large-scale process. Patchy reconnection observed in the Earth's magnetosphere is therefore likely to be a geophysical effect associated with fluctuating boundary conditions, rather than a fundamental property of reconnection. Our observations also reveal, surprisingly, that reconnection can operate in a quasi-steady-state manner even when undriven by the external flow.  相似文献   

3.
Data on plasma sheet crossing measured by Cluster/HIA and Cluster/FGM during the period from July to October in 2001 -2003 are analyzed. Based on previous work on the characteristic features of continuous lobe reconnection (CLR) described in reference, two case studies and a statistical analysis were carried out on correlation between CLR in the mid magnetotail and substorm expansion onset for the events occurring during this period. It is found that almost all CLR events are in close connection with substorms. The beginning of CLR is almost always a few minutes ahead of substorm activities seen in the near Earth magnetotail and on the ground-based stations. This provides a clear indication that CLR is the virtual cause of substorm expansion onset during the period of continuous southward interplanetary magnetic field.  相似文献   

4.
The motion and deceleration processes of plasma sheet high-speed flows have great significance to magnetospheric particle acceleration,magnetic field perturbation,magnetic flux transport,triggering of substorm,and the current system formation in the magnetotail.From February to April 2009,two satellites of the Time History of Events and Macroscale Interactions during Substorms mission,THA and THE,were often separated largely in Z direction,but had small X and Y separations.Such special configuration allows simultaneous observations of highspeed flows at the center and boundary of the plasma sheet.Based on selected case study and statistical analysis,it is found that for about 89%of the events we selected,the probe further away from the neutral sheet observed the high-speed flow earlier than the one close to the center,and the flow is mainly field aligned.And for about 95%events the probe further away from the neutral sheet observed higher X component of the plasma flow.With the hypothesis that parallel flow keeps the same speed during its earthward propagation while central plasma sheet stream uniformly or suddenly brakes on its way to the earth,we deduced the position where the deceleration begins to be between 13 Re and 17 Re downtail,where thenear-earth reconnection is supposed to occur.In addition,our statistical results show that dipolarization fronts observed in the central plasma sheet are more prominent than those observed in the plasma sheet boundary layer ahead of the high-speed flow.  相似文献   

5.
Moser AL  Bellan PM 《Nature》2012,482(7385):379-381
Magnetic reconnection, the process whereby magnetic field lines break and then reconnect to form a different topology, underlies critical dynamics of magnetically confined plasmas in both nature and the laboratory. Magnetic reconnection involves localized diffusion of the magnetic field across plasma, yet observed reconnection rates are typically much higher than can be accounted for using classical electrical resistivity. It is generally proposed that the field diffusion underlying fast reconnection results instead from some combination of non-magnetohydrodynamic processes that become important on the 'microscopic' scale of the ion Larmor radius or the ion skin depth. A recent laboratory experiment demonstrated a transition from slow to fast magnetic reconnection when a current channel narrowed to a microscopic scale, but did not address how a macroscopic magnetohydrodynamic system accesses the microscale. Recent theoretical models and numerical simulations suggest that a macroscopic, two-dimensional magnetohydrodynamic current sheet might do this through a sequence of repetitive tearing and thinning into two-dimensional magnetized plasma structures having successively finer scales. Here we report observations demonstrating a cascade of instabilities from a distinct, macroscopic-scale magnetohydrodynamic instability to a distinct, microscopic-scale (ion skin depth) instability associated with fast magnetic reconnection. These observations resolve the full three-dimensional dynamics and give insight into the frequently impulsive nature of reconnection in space and laboratory plasmas.  相似文献   

6.
From June 1, 2004 to October 31, 2006, a total 465 high-speed flow events are observed by the TC-1 satellite in the near-Earth region (-13 RE〈X〈-9 RE, |Y|〈10 RE, |Z+〈5 RE), Based on the angle between the flow and the magnetic field, the high-speed flow events are further divided into two types, that is, field-aligned high-speed flow (FAHF) in the plasma sheet boundary and convective bursty bulk flow (BBF) in the center plasma sheet, Among the total 465 high-speed flow events, there are 371 FAHFs, and 94 BBFs, The CHF are mainly concentrated in the plasma sheet, the intersection angle between the flow and the magnetic field is larger, the magnetic field intensity is relatively weak, The FHF are mainly distributed near the boundary layer of the plasma sheet, the intersection angle between the flow and magnetic field is smaller, and the magnetic field intensity is relatively strong, The convective BBFs have an important effect on the substorm,  相似文献   

7.
Magnetic reconnection is an important universal plasma dissipation process that converts magnetic energy into plasma thermal and kinetic energy,and simultaneously changes the magnetic field topology.In this paper,we report the first observation of energetic electrons associated with asymmetric reconnection in the sheath of an interplanetary coronal mass ejection.The magnetic field shear angle was about 151°,implying guide-field reconnection.The width of the exhaust was about 8×104 km.The reconnection rate was estimated as 0.044-0.08,which is consistent with fast reconnection theory and previous observations.We observed flux enhancements of energetic electrons with energy up to 400 keV in this reconnection exhaust.The region where ener- getic electron fluxes were enhanced is located at one pair of separatrices in the higher density hemisphere.We discuss these observation results,and compare with previous observations and recent kinetic simulations.  相似文献   

8.
Two-dimensional particle-in-cell simulations are performed to investigate the formation of electron density depletions in collisionless magnetic reconnection.In anti-parallel reconnection,the quadrupole structures of the out-of-plane magnetic field are formed,and four symmetric electron density depletion layers can be found along the separatrices due to the effects of magetic mirror.With the increase of the initial guide field,the symmetry of both the out-of-plane magnetic field and electron density depletion layers is distorted.When the initial guide field is sufficiently large,the electron density depletion layers along the lower left and upper right separatrices disappear.The parallel electric field in guide field reconnection is found to play an important role in forming such structures of the electron density depletion layers.The structures of the out-of-plane magnetic field By and electron depletion layers in anti-parallel and guide field reconnection are found to be related to electron flow or in-plane currents in the separatrix regions.In anti-parallel reconnection,electrons flow towards the X line along the separatrices,and are directed away from the X line along the magnetic field lines just inside the separatrices.In guide field reconnection,electrons can only flow towards the X line along the upper left and lower right separatrices due to the existence of the parallel electric field in these regions.  相似文献   

9.
Che H  Drake JF  Swisdak M 《Nature》2011,474(7350):184-187
During magnetic reconnection, the field lines must break and reconnect to release the energy that drives solar and stellar flares and other explosive events in space and in the laboratory. Exactly how this happens has been unclear, because dissipation is needed to break magnetic field lines and classical collisions are typically weak. Ion-electron drag arising from turbulence, dubbed 'anomalous resistivity', and thermal momentum transport are two mechanisms that have been widely invoked. Measurements of enhanced turbulence near reconnection sites in space and in the laboratory support the anomalous resistivity idea but there has been no demonstration from measurements that this turbulence produces the necessary enhanced drag. Here we report computer simulations that show that neither of the two previously favoured mechanisms controls how magnetic field lines reconnect in the plasmas of greatest interest, those in which the magnetic field dominates the energy budget. Rather, we find that when the current layers that form during magnetic reconnection become too intense, they disintegrate and spread into a complex web of filaments that causes the rate of reconnection to increase abruptly. This filamentary web can be explored in the laboratory or in space with satellites that can measure the resulting electromagnetic turbulence.  相似文献   

10.
The signatures of flux ropes with obvious core magnetic field are detected by Cluster Ⅱ at the dayside magnetopause during 11:00--11:15 UT on Mar. 2, 2001. The similar characteristics can be found from the magnetic fiel dvariations recorded by the four spacecrafts (Cluster Ⅱ C1--C4). All the three (-/ ) bipolar signatures in the BN component are accompanied with enhancements of BM and magnetic field strength B in the boundary normal coordinates (LMN coordinates). A MHD simulation with two dimensions and three components is performed to explore the reconnection process driven by the incoming flow of solar wind at the dayside magnetopause. The numerical results can illustrate the recurrent formation of magnetic structures with a core magnetic field. The time history of the magnetic field B and three components Bx, By and Bz at a given point of the current sheet can reproduce the observational features of the events mentioned above.  相似文献   

11.
Electron dynamics in collisionless magnetic reconnection   总被引:1,自引:0,他引:1  
Magnetic reconnection provides a physical mechanism for fast energy conversion from magnetic energy to plasma kinetic energy. It is closely associated with many explosive phenomena in space plasma, usually collisionless in character. For this reason, researchers have become more interested in collisionless magnetic reconnection. In this paper, the various roles of electron dynamics in collisionless magnetic reconnection are reviewed. First, at the ion inertial length scale, ions and electrons are decoupled. The resulting Hall effect determines the reconnection electric field. Moreover, electron motions determine the current system inside the reconnection plane and the electron density cavity along the separatrices. The current system in this plane produces an out-of-plane magnetic field. Second, at the electron inertial length scale, the anisotropy of electron pressure determines the magnitude of the reconnection electric field in this region. The production of energetic electrons, which is an important characteristic during magnetic reconnection, is accelerated by the reconnection electric field. In addition, the different topologies, temporal evolution and spatial distribution of the magnetic field affect the accelerating process of electrons and determine the final energy of the accelerated electrons. Third, we discuss results from simulations and spacecraft observations on the secondary magnetic islands produced due to secondary instabilities around the X point, and the associated energetic electrons. Furthermore, progress in laboratory plasma studies is also discussed in regard to electron dynamics during magnetic reconnection. Finally, some unresolved problems are presented.  相似文献   

12.
On July 22, 2004, the WIND spacecraft detected a typical interplanetary shock. There was sustaining weak southward magnetic field in the preshock region and the southward field was suddenly enhanced across the shock front (i.e., southward turning). When the shock impinged on the magnetosphere, the magnetospheric plasma convection was abruptly enhanced in the central plasma sheet, which was directly observed by both the TC-1 and Cluster spacecraft located in different regions. Simultaneously, the Cluster spacecraft observed that the dawn-to-dusk electric field was abruptly enhanced. The variations of the magnetic field observed by TC-1, Cluster, GOES-10 and GOES-12 that were distributed in different regions in the plasma sheet and at the geosynchronous orbit are obviously distinct. TC-1 observations showed that the magnetic intensity kept almost unchanged and the elevation angle decreased, but the Cluster spacecraft, which was also in the plasma sheet and was further from the equator, observed that the magnetic field was obviously enhanced. Simultaneously, GOES-12 located near the midnight observed that the magnetic intensity sharply increased and the elevation angle decreased, but GOES-10 located in the dawn side observed that the magnetic field was merely compressed with its three components all sharply increasing. Furthermore, the energetic proton and electron fluxes at nearly all channels observed by five LANL satellites located at different magnetic local times (MLTs) all showed impulsive enhancements due to the compression of the shock. The responses of the energetic particles were much evident on the dayside than those on the nightside. Especially the responses near the midnight were rather weak. In this paper, the possible reasonable physical explanation to above observations is also discussed. All the shock-induced responses are the joint effects of the solar wind dynamic pressure pulse and the magnetic field southward turning.  相似文献   

13.
In collisionless reconnection,the magnetic field near the separatrix is stronger than that around the X-line,so an electron-beam can be formed and flows toward the X-line,which leads to a decrease of the electron density near the separatrix.Having been accelerated around the X-line,the electrons flow out along the magnetic field lines in the inner side of the separatrix.A quadruple structure of the Hall magnetic field By is formed by such a current system.A 2D particle-in-cell (PIC) simulation code is used ...  相似文献   

14.
As well known, the magnetic cross-tail component By in the magnetotail is in direct proportion to the in-terplanetary magnetic field (IMF) By component. And the polarity of IMF and plasmoid / flux rope By components do indeed agree. This results indicate that the IMF By penetrates plasmoids and the magnetic structures must therefore be three-dimensional. In this note, the dynamical processes of magnetotail in the course of a substorm are studied using a MHD code with two-dimensions and three components on the basis of two types of initial equilibrium solutions of the quiet magnetotail. The numerical results of two cases illustrate various features of time evolution of By component that correspond to two kinds of plasmoid-like structures: one is associated with a flux rope core and the other resembles a “closed loop” plamoid. Therefore, the occurrence of various magnetic structures in the magnetotail might be related to nonsteady driven reconnection with different distributions of the By component.  相似文献   

15.
Two-dimensional particle-in-cell (PIC) simulation is used to investigate electron dynamics in collisionless magnetic reconnection, and the proton/electron mass ratio is taken to be m i /m e = 256. The results show that the presence of a strong initial guide field will change the direction of the electron flow. The electron density cavities and the parallel electric field can be found in the electron inflow region along the separatrix, and the electron inflow and density cavities only appear in the second and fourth quadrants. What is different from the results with a smaller mass ratio is that new structures appear in the diffusion region near the X line: (1) Narrow regions of density enhancement and density cavities can be found synchronously in this region; and (2) corresponding to the electron density changes near the X line, the strong parallel electric fields are found to occur in the first and third quadrants. These electric fields perhaps play a more important role in acceleration and heating electrons than those fields located in the density cavities. Supported by National Natural Science Foundation of China (Grant No. 40725013) and Open Research Program Foundation of State Key Laboratory for Space Weather, Chinese Academy Sciences  相似文献   

16.
Molecular devices are the ultimate goal in the miniaturization of the electronic technology. Based on the unique properties of DNA (e.g. self-assembly and molecular recognition), people have made great efforts to develop molecular devices in the last few …  相似文献   

17.
LiAlxMn2—xO4 (0≤x≤0.5) was synthesized by high temperature solid-state reaction. The structure and morphology of LiAlxMn2—xO4 were investigated by X-ray diffraction and scanning electron microscopy (SEM). The results indicate that all samples show spinel phase. The polyhedral particles turn to club-shaped, then change to small spherical, and finally become agglomerates with increasing Al content. The supercapacitive performances of LiAlxMn2—xO4 were studied by means of galvanostatic charge-discharge, cyclic voltammetry, and alternating current (AC) impedance in 2 mol·L−1 (NH4)2SO4 aqueous solution. The results show that LiAlxMn2—xO4 represents rectangular shape performance in the potential range of 0-1 V. The capacity and cycle performance can be improved by doping Al. The composition of x=0.1 has the maximum special capacitance of 160 F·g−1, which is 1.37 times that of LiMn2O4 electrode. The capacitance loss of LiAlxMn2—xO4 with x=0.1 is only about 14% after 100 cycles.  相似文献   

18.
路兴强 《科学技术与工程》2011,11(12):2775-2776,2783
采用实际的磁尾位型,利用数值模拟方法研究磁层亚暴过程中高速流分布。结果表明垂直磁场的高速流主要分布在电流片内,范围在|Z|<0.25RE;平行磁场高速流分布区域在两个区域较大,一个是距离地球较近的磁场较强的区域,另一个是距离等离子体片较近磁场较强的区域。  相似文献   

19.
Based upon the observational data of the fast magnetic reconnection in the nearly collisionless magnetotail and the particle in cell (PIC)simulations on the electron acceleration in the reconnecting current sheet with guide magnetic field,we self consistently solved one dimension Vlasov equation with the magnetotail parameters and realistic mass ratio to explore the relationship between the anomalous resistivity and the induced electric field.As compared with theoretic formula for the current driven ion-acoustic and Buneman anomalous resistivity,the anomalous resistivity may result from the ion acoustic instability for small reconnecting electric field and the Buneman instability for large reconnecting electric field.The discrepancy between the theoretic results and numerical simulations may be caused by the high frequency instability that results from the deviation of electron distribution from Maxwellian one.These results are consistent with the early experimental results and favorable for the fast reconnection to take place.  相似文献   

20.
Ulysses has been the first spacecraft to explore the high latitudinal regions of the heliosphere till now. During its first rapid pole-to-pole transit from September 1994 to June 1995, Ulysses observed a fast speed flow with magnitude reaching 700—800 km/s at high latitudinal region except 20°area near the ecliptic plane where the velocity is 300—400 km/s. The observations also showed a sudden jump of the velocity across the two regions. In this note, based on the characteristic and representative observations of the solar magnetic field and K-coronal polarized brightness, the large-scale solar wind structure mentioned above is reproduced by using a three-dimensional MHD model. The numerical results are basically consistent with those of Ulysses observations. Our results also show that the distributions of magnetic field and plasma number density on the solar source surface play an important role in governing this structure. Furthermore, the three-dimensional MHD model used here has a robust ability to simulate this kind of large-scale wind structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号