首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conclusions The initial slope of A/ light curve became steep under high CO2 (700 μmol · mol-1) compared with that under low CO2 (350 μmol · mol-1) for the C3 species growing in very high CO2(>2 200 μmol · mol-1) for a long period. The light compensation points remained unchanged, but the light saturation points were found increased. The ϕm,app and Amax of the C3 species increased respectively by 79 % and 80 %, while those of C4 species decreased by 10% and 14%, respectively. The shape of A/light curve of C4 species did not change. Such results indicated that C3 species increased the capacity of photosynthesis, while C4 did not change, otherwise it decreased a little. This work only compared the changes of capacity in photosynthesis of some species under different CO2 levels in Biosphere 2. We need further investigation on the effects of high CO2 on the same species outside Biosphere 2, in order to fully undertand the effects and mechanism of response of plants to the elevated CO2.  相似文献   

2.
通过川西亚高山野外大型控制实验,研究了红桦不同密度下的根系生物量、根际土壤微生物数量和根际土壤酶活性对短期升高温度(ET,相对室外平均升温2.4±0.4 ℃)、升高大气CO2浓度(EC,平均增加15.5±1.0 μmol·L-1)及交互作用(ETC,生长室相对室外平均升温2.2±0.5 ℃并CO2浓度平均增加15.8±1.2 μmol·L-1)的响应.初步结果表明:升高大气温度或CO2浓度均能够显著促进红桦低密度和高密度下单株根系生物量;升高温度和CO2浓度及二者共同升高对微生物类群和数量影响不同,升高温度细菌、真菌数量以及低密度下放线菌数量显著增加,而高密度下放线菌数量显著下降;升高CO2浓度下高密度时细菌和真菌数量增加而低密度下均显著下降;升高温度(ET)显著抑制高、低密度下红桦根际土壤多酚氧化酶活性,升高CO2(EC)根际土壤过氧化氢酶活性在2种密度条件下均不同程度升高,土壤脲酶和多酚氧化酶活性则降低;ETC条件下,根际土壤多酚氧化酶和过氧化氢酶在2种密度下均表现出不同程度的降低,但脲酶活性在高、低密度条件下对ETC表现出不同的响应结果.  相似文献   

3.
According to the investigations of five loess sections in Shanxi Province, China, it was found that the concentrations of the major greenhouse gases CO2, CH4 and N2O in loess-paleosol sequences are generally high, even sometimes may be several times or scores of times higher than their atmospheric concentrations respectively. Although the CO2 concentration in the same loess section shows poor regularity among different layers, it increases slowly from north to south in space. The CH4 concentration in the layers under Malan Loess is much higher than that in the atmosphere, although it is not high in Malan Loess. Most of the δ13C values of CO2 in loess are -11.14‰—15.48‰ (relative to PDB standard). Analysis of carbon isotopic compositions of CO2 indicates that the main source of CO2 in loess section is decomposition of ‘stable’ organic matters by microbes. The δ13Cg of CO2 is a little heavier than organic source for exchanging carbon isotope with carbonate in loess. The abundant carbonate in loess not only makes the loess a huge carbon reservior but also adjusts  相似文献   

4.
Chen  PengNa  Wang  GuoAn  Han  JiaMao  Liu  XiaoJuan  Liu  Min 《科学通报(英文版)》2010,55(1):55-62
Carbon isotope ratios (δ13C) of plants, litter and soil organic matter (0–5 cm, 5–10 cm and 10–20 cm) on the eastern slope of Mount Gongga were measured. The results show that δ13C values of plants, litter and soil organic matter all decrease first and then increase with altitude, i.e δ13C values gradually decrease from 1200 to 2100 m a.s.l., and increase from 2100 to 4500 m a.s.l. The δ13C altitudinal variations are related to the distribution of C3 and C4 plants on the eastern slope of Mount Gongga, because C4 plants are observed to grow only below 2100 m, while C3 plants occur at all altitudes. There are significantly positive correla-tions among δ13C of vegetation, δ13C of litter and δ13C of soil organic matter, and litter, 0–5 cm, 5–10 cm and 10–20 cm soil or-ganic matter are 0.56‰, 2.87‰, 3.04‰ and 3.49‰ greater in δ13C than vegetation, respectively. Considering the influences of rising concentration of atmospheric CO2 and decreasing δ13C of atmospheric CO2 since the industry revolution on δ13C of plants, 1.57‰ is proposed to be the smallest correction value for reconstruction of paleovegetation using δ13C of soil organic matter.  相似文献   

5.
The concentration of atmospheric CO2 in Beijing increased rapidly at a mean growth rate of 3.7% · a−1 from 1993 to 1995. After displaying a peak of (409.7±25.9) μmol · mol−1 in 1995, it decreased slowly. Both the almost stable anthropogenic CO2 source and increasing biotic CO2 sink contribute to the drop of CO2 concentration from 1995 to 2000. The seasonal variation of CO2 concentration exhibits a clear cycle with a maximum in winter, averaging (426.8±20.6) μmol · mol−1, and a minimum in summer, averaging (369.1±6.1) μmol·mol−1. The seasonal variation of CO2 concentration is mainly controlled by phenology. The mean diurnal variation of atmospheric CO2 concentration for a year in Beijing is highly clear: daily maximum CO2 concentration usually occurs at night, but daily minimum CO2 concentration does in the daytime, with a mean diurnal difference more than 34.7 μmol·mol−1. It has been revealed that the interannual variations of atmospheric CO2 concentration in winter and autumn regulated the interannual trend of atmospheric CO2, whereas the interannual variation of CO2 concentration in summer affected the general tendency of atmospheric CO2 in a less degree.  相似文献   

6.
通过精确的LBLRTM逐线积分模式建立CO_2体积分数变化模型,分析了CO_2的温室效应饱和度,并对未来地表温升的变化趋势进行了预测.结果表明,目前CO_2的持续排放只能使其在680cm~(-1)强吸收带中心达到饱和,而在未来相当长一段时间内,其仍将通过该吸收带的翼区以及1 000cm~(-1),1 350cm~(-1)与1 900cm~(-1)等弱吸收带对地表红外辐射表现出强烈的吸收,CO_2的温室效应还远未达到饱和;如果按照当前CO_22.2(mL/·m~(-3))/a的年排放速率,CO_2的大气体积分数将会持续增加,从而造成地表温度不断升高,到2056年,地表温升将会达到2K.  相似文献   

7.
Global CH4 emission may increase under CO2 enrichment condition, which is projected for the future. CO2 enrichment could affect CH4 emission in two ways: (i) Photosynthesis of plants that also include plants in rice paddies and natural wetlands will be stimulated under CO2 enrichment condition. CH4 emission rate may be increased due to the accumulation of more plant biomass, root exudes and soil organic matters. (ii) Combined with other global warming forces, CO2 enrichment may bring a change of atmospheric temperature and precipitation around the world. CH4 emission will also be changed with the variation of the area and distribution of rice paddies and natural wetlands.  相似文献   

8.
Zheng  YouFei  Li  HaiTao  Wu  RongJun  Wang  LianXi 《科学通报(英文版)》2010,55(19):1983-1992
Global warming tends to be the major characteristics of the dramatic global climate change. To deal with these changes, the impact of reducing greenhouse gas (GHG) emission on Chinese future economic and social development has to be assessed. In this paper, a Regional Integrated model of Climate and the Economy (RICE), which is well known and accepted widely, has been used for Chinese economic assessment of climate change after introduction, assimilation and verification. Based on a sensitivity analysis of technical parameters in the RICE model and constrained targets proposed for energy saving and emissions reduction technological advance programs of China from 2000 to 2050, the economic impact of the programs is examined. The results indicate that when technology advances, Chinese CO2 emission, climate loss, and the growth rate of atmospheric CO2 concentration and temperature will all decrease. It is assumed that in 2010, the CO2 emission is 20% lower than in 2005, CO2emission in 2050 would only double the level in 2000, the accumulative CO2 emission would be decreased by 12.4 GtC, and the atmospheric CO2 concentration and temperature in 2050 would reduce by 35 GtC and 0.04°C respectively from 2000 to 2050. The accumulative climate loss from 2000 to 2050 will drop down by 4.6 billion dollar, which only accounts for 6% of the global total benefits. However, the economic benefit the developed countries will obtain is 10 times that for China under such a technological advance scenario. The decrease of the CO2 emission control rate is 1% in cooperation policy while 4.6% in non-cooperation policy, which would relieve China’s burden in the control of CO2 total emission and thereby benefit China in participation of the international cooperation for CO2 emission reduction.  相似文献   

9.
Carbon isotopic compositions of soil CO2 in rainy season (July) from two natural soil profiles (DHLS & DHS) in the monsoon evergreen broadleaf forest in the Dinghushan Biosphere Reservoir (DBR), South China, are presented. Turnover and origins of soil CO2 are preliminarily discussed in this paper. Results show that the content of soil CO2 varies between 6120 and 18718 ppmv, and increases with increasing depth until 75 cm, and then it declines. In DHLS, soil CO2 δ13C ranges from −24.71‰ to −24.03‰, showing a significant inverse correlation (R2=0.91) with the soil CO2 content in the same layer. According to a model related to soil CO2 δ13C, the soil CO2 is mainly derived from the root respiration (>80%) in DHLS. While in DHS, where soil CO2 ? 13C ranges from −25.19‰ to −22.82‰, soil CO2 is primarily originated from the decomposition of organic matter (51%–94%), excluding the surface layer (20 cm, 90%). Radiocarbon data suggest that the carbon in soil CO2 is modern carbon in both DHLS and DHS. Differences in 14C ages between the “oldest” and “youngest” soil CO2 in DHLS and DHS are 8 months and 14 months, respectively, indicating that soil CO2 in DHLS has a faster turnover rate than that in DHS. The 14C values of soil CO2, which range between 100.0‰ and 107.2‰ and between 102.5‰ and 112.1‰ in DHLS and DHS, respectively, are obviously higher than those of current atmospheric CO2 and SOC in the same layer, suggesting that soil CO2 is likely an important reservoir for Bomb-14C in the atmosphere.  相似文献   

10.
The association between the Siberian Traps, the largest continental flood basalt province, and the largest-known mass extinction event at the end of the Permian period, has been strengthened by recently-published high-precision 40Ar/39Ar dates from widespread localities across the Siberian province[1]. We argue that the impact of the volcanism was amplified by the prevailing late Permian environmental conditions―in particular, the hothouse climate, with sluggish oceanic circulation, that was leading to widespread oceanic anoxia. Volcanism released large masses of sulphate aerosols and carbon dioxide, the former triggering short-duration volcanic winters, the latter leading to long-term warming. Whilst the mass of CO2 released from individual eruptions was small compared with the total mass of carbon in the atmosphere-ocean system, the long ‘mean lifetime’ of atmospheric CO2, compared with the eruption flux and duration, meant that significant accumulation could occur over periods of 105 years. Compromise of the carbon sequestration systems (by curtailment of photosynthesis, destruction of biomass, and warming and acidification of the oceans) probably led to rapid atmospheric CO2 build-up, warming, and shallow-water anoxia, leading ultimately to mass extinction.  相似文献   

11.
广东韩江流域化学风化作用及大气CO2消耗的分析   总被引:1,自引:0,他引:1  
岩石的风化作用与碳循环有着极为密切的联系。韩江流域处于湿热地区,是广东省除珠江流域以外的第二大流域。对韩江水系进行了系统采样、测试分析显示,河水水化学组成以HCO3-和Ca2+为主,其次是SO24-和Na+。Gibbs图分析表明,韩江流域河水离子成分主要来源于岩石的风化释放;相关分析和因子分析则表明,蒸发盐岩、碳酸盐岩、硅酸盐岩风化过程对河水离子的贡献率分别为33.4%、27.7%和为10.5%。大气中的CO2通过参与岩石的化学风化过程对河水中溶解质的贡献率为20.2%。韩江流域河水中HCO3-有50.2%来自大气CO2,由此估算韩江流域岩石化学风化对大气CO2的消耗量为73.33×108mol/a。在主要支流中,由大到小的顺序是汀江、石窟河、宁江、五华河和梅潭河,分别为28.08×108,13.26×108,10.22×108,5.17×108和2.90×108mol/a。韩江流域岩石化学风化对大气CO2的消耗率为252.2×103mol/(km2·a)。各主要支流中岩石化学风化对大气CO2消耗率最高的是宁江,为718.55×103mol/(km2·a),其次是石窟河360.14×103mol/(km2·a),再依次递减的是五华河282.04×103 mol/(km2·a),汀江237.73×103 mol/(km2·a),梅潭河181.18×103mol/(km2·a);韩江流域的平均化学风化率为54.11 t/(km2·a),各主要支流由高到低依次为,宁江最高140.5 t/(km2·a),石窟河71.2 t/(km2·a),汀江52.39 t/(km2·a),五华河51.02 t/(km2·a),梅潭河38.04 t/(km2·a)。  相似文献   

12.
Isotopic analyses for paleovegetational evolution have been carried out on samples of the pedogenic carbonate nodules in the Red Clay-Loess sequence at Lingtai (35°N), the Loess Plateau. Stable carbon isotopic composition indicates that ( i ) C4 plants might be present at least by7.0 Ma; ( ii ) C4 plants expanded gradually between ~4.0 and ~3.2 Ma, and their biomass fraction was up to 50% ; and (Ⅲ ) the biomass of C4 vegetation since ~2.0 Ma seems to have been decreased to the level (about 20%) before 4.0 Ma. C4 plant expansion at Lingtai cannot be fully understood with the "global C4 expansion" model because it occurred much later up to 3.0 Ma than in Pakistan, which indicates that some changes in the regional climatic system may also contribute to C3/C4 shift except changes in atmospheric CO2 concentrations and temperature. The latitudinal zone for C3/C4 transition seems to move southwards slightly in East Asia, compared with the case in North America where 37°N癗 is the ideal boundary for the C4 expansion.  相似文献   

13.
Southern Hemisphere mid-latitude westerlies contribute to the ventilation of the deep Southern Ocean (SO), and drive changes in atmospheric carbon dioxide (CO2) and the global climate. As the westerlies control directly oceanic fronts, the movement of the subtropical front (STF) reflects the westerlies migration. Thus it is important to understand the relationships between STF movement and the weaterlies, ventilation of the deep SO, ice volume and atmospheric CO2. To this end, we use two new high-resolution records from early Marine Isotope Stage (MIS) 20 (~800 ka) of sea surface temperature (SST) based on Uk’ 37 paleo-thermometer and benthic oxygen isotope (δ18OB) at Ocean Drilling Program (ODP) Site 1170B in the southern Tasman Sea (STS), to construct linkages between the marine records and atmospheric proxies from Antarctic ice-cores. During the last 800 ka, the average SST (10.2°C) at Site 1170B is 1.8°C lower than today (annual average 12°C). The highest average SST of 11.6°C occurred during MIS 1, and the lowest average SST of 7.8°C occurred during MIS 2. The warmest and coldest records of 14.7°C and 6.2°C occurred in the MIS 5 and MIS 2, respectively. In the glacial-interglacial cycles of the last 800 ka, variability of reconstructed SST shows that the STF moved northward or southward more than 3° of latitude compared with its present location. In the warmest stage MIS 5, the STF shifted to its southernmost location of ~49°S. In contrast, in the coldest stage MIS 2, the STF moved to its northernmost location of ~43°S. In response to orbital cycles, the westerlies movement led ice volume and atmospheric CO2 changes, but it was in phase with change in Antarctic atmospheric temperature. Ice volume only preceded atmospheric CO2 only a little at the 23-ka precession band, lagged the atmospheric CO2 at the 100-ka eccentricity band, and was in phase with atmospheric CO2 at the 40-ka obliquity band.  相似文献   

14.
The available methods for studying C uptake of forest and their problems in practices are reviewed, and a new approach to combining sap flow and ^13C techniques is proposed in this paper. This approach, obtained through strict mathematic derivation, combines sap flow measurement-based canopy stomatal conductance and ^13C discrimination to estimate instantaneous carbon assimilation rate of a forest. Namely the mean canopy stomatal conductance (gc) acquired from accurate measurement of sap flux density is integrated with the relationship between ^13C discrimination (A) and G/Ca (intercellular/ambient CO2 concentrations) and with that between Anet (net photosynthetic rate) and gco2 (stomatal conductance for CO2) so that a new relation between forest C uptake and A as well as gc is established. It is a new method of such kind for studying the C exchange between forest and atmosphere based on experimental ecology.  相似文献   

15.
The mechanism of peroxynitrite (ONOO)-induced [ca2+]i increase in single MN9D cell (Dopaminergic neuroblastoma cell line) was studied by using Fura-2 microfluorometric technique. The results show that ONOO caused a rapid increase of [Ca2+]i when ONOO was puffed to the cell. Removing Ca2+ from the bath or using calcium channel antagonist (CdCl2, Nifedipine) greatly inhibited the [Ca2+]i increase induced by ONOO−1, suggesting that the opening of L-Ca2+ channel makes a great contribution to the [Ca2+]i increase. The effect of sulfhydryl reductive agent (DTT) on ONOO-induced [Ca2+]i increase suggests that ONOO-activating L-Ca2+ channel is partly related to its oxidative speciality.  相似文献   

16.
The Chinese carbon cycle data-assimilation system (Tan-Tracker)   总被引:1,自引:1,他引:0  
In this study, the Chinese carbon cyle dataassimilation system Tan-Tracker is developed based on the atmospheric chemical transport model (GEOS-Chem) platform. Tan-Tracker is a dual-pass data-assimilation system in which both CO2 concentrations and CO2 fluxes are simultaneously assimilated from atmospheric observations. It has several advantages, including its advanced data-assimilation method, its highly efficient computing performance, and its simultaneous assimilation of CO2 concentrations and CO2 fluxes. Preliminary observing system simulation experiments demonstrate its robust performance with high assimilation precision, making full use of observations. The Tan-Tracker system can only assimilate in situ observations for the moment. In the future, we hope to extend Tan-Tracker with functions for using satellite measurements, which will form the quasioperational Chinese carbon cycle data-assimilation system.  相似文献   

17.
Studies were carried out on the early phase of fluid inclusions which occur in residual olivines in harzburgite from the Yushigou ophiolitic mantle peridotite, the North Qilian Mountains. Components of these inclusions, analyzed by micro laser Raman spectroscopy, are dominantly CH, (70%–95%) with minor H2, N2, H2S, CO2,C2H4, C2H6, and C3H6 but there are no H2O,CO and SO2. The highly CH4-rich fluid was probably derived from an ancient deep mantle. This discovery plays an important role in all-round understanding of the fluid property of the upper mantle, especially the ancient oceanic upper mantle.  相似文献   

18.
Electronic structures and infrared spectra of C120XY molecules (X, Y=O, S) and some of the corresponding ions are investigated using PM3 semi-empirical molecular orbital calculations with full optimization of geometrical structures. It is found that the energy penalty is about 30–42 kJ/mol due to introducing a double bond in the fivemembered ring except for C120O2 and triplet C120O2 2−. It is also found that the structures of neutral molecules and the corresponding ions are almost the same; for instance, the change of bond length is less than 0.001 nm. The change of frontier orbits from oxide to sulfide is little as well. The triplet states of C120O2 2− and C120OS2− are more stable than their singlet states, which means that C120O2 2− and C120OS2− follow the Hund’s rule. The vibration analysis showed that the infrared spectra of neutral C120O2 and C120OS molecules are in good agreement with the experimental results. Compared with the neutral molecule, vibration frequencies of triplet C120O2 2− change little, but the vibration intensities are enhanced obviously.  相似文献   

19.
The relationship between the stomatal density of five woody plants endemic to China, i. e.Eucommia ulmoides, Quercus liaotungensis, Q. glandulifera var.brevipetiolata, Cyclocarya paliurus andFicus heteromorpha, and the atmospheric CO2 concentrations was studied by observations on leaves of the herbarium-stored specimms(1920s–1990s). The results showed that the stomatal density inEucommia ulmoides, Quercus liaotungensis andQ. glandulifera var.brevipetiolata decreased significantly in response to the elevated atmospheric CO2 concentrations, while inCyclocarya paliurus it decreased slightly and inFicus heteromorpha there were no responses.  相似文献   

20.
The transient absorption spectrum technique was employed to investigate the cross-reaction mechanism of C6H5F-HNO2 aqueous solution irradiated at 355 nm. The characteristic and the kinetic parameters of transient species were also detected. Hydroxyl radical derived from the photolysis of HNO2 was added to monofluorobenzene with a second-order rate constant of (5.83±0.17)×10^9 L·mol^-1·s^-1 to form an adduct, C6H5F…OH, which was able to react with HNO2 as the main reaction pathway with a rate constant of (8.3±0.1)×10^7 L·mol^-1·s^-1. The C6F6…OH adduct can also be decayed by elimination of H2O to yield monofluorophenyl radical C6H4F-. By GC-MS technique, the final products were identified to be monofluorophenol, nitro-monofluorobenzene, nitro-monofluorophenol and para-fluorobiphenyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号