首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myocardial infarction (MI) is a leading cause of hospitalization worldwide. A recently developed strategy to improve the management of MI is based on the use of growth factors which are able to enhance the intrinsic capacity of the heart to repair itself or regenerate after damage. Among others, hepatocyte growth factor (HGF) has been proposed as a modulator of cardiac repair of damage due to the pleiotropic effects elicited by Met receptor stimulation. In this review we describe the mechanistic basis for autocrine and paracrine protection of HGF in the injured heart. We also analyse the role of HGF/Met in stem cell maintenance and in stem cell therapies for MI. Finally, we summarize the most significant results on the use of HGF in experimental models of heart injury and discuss the potential of the molecule for treating ischaemic heart disease in humans.  相似文献   

2.
The relationship between incorporation of intravenously injected 14C lysine and specific radio-activity of precursor was used to estimate protein synthesis in muscle of growing lambs. The rate of protein synthesis per unit of muscle weight in Supraspinatus and Extensor digitorum longus decreased strongly from one week of age to puberty (10 weeks); afterwards it decreased in supraspinatus and increased slightly in Extensor digitorum longus. The rate of protein synthesis increase in muscle protein weight was constant during the whole experiment (1 week-16 weeks). In preruminant Lambs )1 week-5 weeks) the rate of protein synthesis per unit of muscle weight decreased; however, due to the increase in muscle weight, the rate of protein synthesis in whole muscle remained relatively constant. In order Lambs the rate of protein synthesis in whole muscle decreased. The turnover time of protein increased with age. These results give some explanation on muscular development of Lambs.  相似文献   

3.
The regulation of the protein synthesis has a crucial role in governing the eukaryotic cell growth. Subtle changes of proteins involved in the translation process may alter the rate of the protein synthesis and modify the cell fate by shifting the balance from normal status into a tumoral or apoptotic one. The largest eukaryotic initiation factor involved in translation regulation is eIF3. Amongst the 13 factors constituting eIF3, the f subunit finely regulates this balance in a cell-type-specific manner. Loss of this factor causes malignancy in several cells, and atrophy in normal muscle cells. The intracellular interacting partners which influence its physiological significance in both cancer and muscle cells are detailed in this review. By delineating the global interaction network of this factor and by clarifying its intracellular role, it becomes apparent that the f subunit represents a promising candidate molecule to use for biotherapeutic applications.  相似文献   

4.
Summary (1) The rate of protein synthesis was found to be different inAcetabularia crenulata andAcetabularia mediterranea the higher cytoplasmic protein synthesis inA. crenulata depending upon the diameter of the stalk.(2) In systems containing one or two nuclei, there was no difference in the rate of cytoplasmic synthesis of proteins. This corresponds to the diminution of size and efficiency of the nuclei in binucleated systems.(3) In interspecific grafts, the rate of cytoplasmic protein synthesis corresponds nearly to the rate of protein synthesis ofAcetabularia crenulata. Corresponding to morphogenetic processes, thecren-action is prevalent.  相似文献   

5.
The elongation and termination steps of protein synthesis are controlled by elongation and release factors, respectively. Elongation factors deliver the aminoacyl tRNA to the ribosomal A site, ensuring the elongation of the nascent polypeptide chain by one amino acid at a time, while release factors recognize the stop codons and trigger the release of the polypeptide from the ribosome. Recently, highresolution crystal structures of ribosomes as well as translation factors on and off the ribosome have contributed a great deal to our understanding of the molecular basis of protein synthesis. This review concentrates on recent developments in our understanding of the elongation and termination steps of protein synthesis, particularly the roles of translation factors and their similarities and differences in the eukaryotic cytosol and prokaryotic systems, through a combination of structural and biochemical studies. Received 25 October 2007; received after revision 5 December 2007; accepted 7 December 2007  相似文献   

6.
Numerous reports suggest that stress protein accumulation confers protection in various mammalian tissues against differing stresses. The purpose of this article is to review the evidence that stress proteins, in particular hsp70, are able to alter the resistance of the heart to subsequent ischaemic and non-ischaemic injury and to discuss the possible physiological basis for this apparent protection. The possible, though unlikely involvement of heat stress proteins in classical ischaemic preconditioning is addressed as is the possibility of their involvement in a delayed second window of protection.  相似文献   

7.
P Maier 《Experientia》1988,44(10):807-817
Freshly isolated and cultured hepatocytes were analyzed by two-parameter flow cytometry. The combined analysis of DNA and cellular protein content allowed the contribution of ploidy classes and of subpopulations within a ploidy class to be defined. Analysis of hepatocytes during exposure to dimethylsulfoxide (DMSO), phenobarbital (PB), low oxygen tension (4% O2) or fetal calf serum (FCS), provided insight into the dynamic response of individual ploidy classes as a function of culture time. By analogy with the age-dependent ploidy shifts in vivo, hepatocyte-cultures shift towards adult animals during exposure to DMSO and towards young animals when cultured at low pO2 (4% O2). FCS and phenobarbital disturb this constitutive ploidy balance. FCS increased the 2 N cell population, where stem cells probably respond to the proliferative stimuli provided by growth factors in the serum. Phenobarbital affects the liver-specific 4 N hepatocytes, which agrees with effects seen in liver after exposure in vivo. It is suggested that drug-induced pathological alterations in ploidy in hepatocyte cultures could serve as indicators of compounds, such as liver tumor promoters, which interfere with cell differentiation in liver. The heterotypic cell-cell interaction of freshly isolated hepatocytes with isolated, in vitro cultured, rat liver epithelial cells in co-cultures proved to be a valuable concept in toxicity testing: aldrin epoxidase, an enzyme system involved in xenobiotic metabolism, was stabilized for more than two weeks. After exposure to the three chemicals, 2-acetylaminofluoren, procarbazine and cyproterone-acetate, a preferential toxicity for each compound and cell population was established. Thus heterotypic cell cultures can considerably increase the amount of information available from in vitro studies. The final concept, combining monitoring of cellular DNA (ploidy) and protein content in hepatocyte cultures during and after exposure to a given test compound at tissue oxygen tension with the heterotypic cell-cell interaction, would create a more in vivo-like culture system. This would enhance the predictability of hepatocyte cultures and contribute to a more widespread use of the test system and as a result help to reduce the number of whole-animal tests.  相似文献   

8.
Summary Freshly isolated and cultured hepatocytes were analyzed by two-parameter flow cytometry. The combined analysis of DNA and cellular protein content allowed the contribution of ploidy classes and of subpopulations within a ploidy class to be defined. Analysis of hepatocytes during exposure to dimethylsulfoxide (DMSO), phenobarbital (PB), low oxygen tension (5% O2) or fetal calf serum (FCS), provided insight into the dynamic response of individual ploidy classes as a function of culture time. By analogy with the age-dependent ploidy shifts in vivo, hepatocyte-cultures shift towards adult animals during exposure to DMSO and towards young animals when cultured at low pO2 (4% O2). FCS and phenobarbital disturb this constitutive ploidy balance. FCS increased the 2 N cell population, where stem cells probably respond to the proliferative stimuli provided by growth factors in the serum. Phenobarbital affects the liver-specific 4 N hepatocytes, which agrees with effects seen in liver after exposure in vivo. It is suggested that drug-induced pathological alterations in ploidy in hepatocyte cultures could serve as indicators of compounds, such as liver tumor promoters, which interfere with cell differentiation in liver. The heterotypic cell-cell interaction of freshly isolated hepatocytes with isolated, in vitro cultured, rat liver epithelial cells in co-cultures proved to be a valuable concept in toxicity testing: aldrin epoxidase, an enzyme system involved in xenobiotic metabolism, was stabilized for more than two weeks. After exposure to the three chemicals, 2-acetylaminofluoren, procarbazine and cyproterone-acetate, a preferential toxicity for each compound and cell population was established. Thus heterotypic cell cultures can considerably increase the amount of information available from in vitro studies.The final concept, combining monitoring of cellular DNA (ploidy) and protein content in hepatocyte cultures during and after exposure to a given test compound at tissue oxygen tension with the heterotypic cell-cell interaction, would create a more in vivo-like culture system. This would enhance the predictability of hepatocyte cultures and contribute to a more widespread use of the test system and as a result help to reduce the number of whole-animal tests.  相似文献   

9.
E Mattei  A Delpino  U Ferrini 《Experientia》1979,35(9):1213-1215
Time- and dose-dependent protein synthesis inhibition takes place following exposure to high doses of dimethylnitrosamine (DMN) or diethylnitrosamine (DENA) in isolated rat hepatocytes. The ability of DENA to depress protein synthesis is 5-fold higher than that of DMN. Cells inhibited by 60 min exposure to DMN or DENA, and then incubated in a nitrosamine-free medium, regain their initial rate of protein synthesis. This recovery is faster and more complete for DENA-treated cells.  相似文献   

10.
Summary Time- and dose-dependent protein synthesis inhibition takes place following exposure to high doses of dimethylnitrosamine (DMN) or diethylnitrosamine (DENA) in isolated rat hepatocytes. The ability of DENA to depress protein synthesis is 5-fold higher than that of DMN. Cells inhibited by 60 min exposure to DMN or DENA, and then incubated in a nitrosamine-free medium, regain their initial rate of protein synthesis. This recovery is faster and more complete for DENA-treated cells.  相似文献   

11.
The ability of nonprotein thiols to modulate rates of protein synthesis was investigated in isolated rat hepatocytes. Addition of cysteine stimulates protein labelling by [14C] Leucine. Glutahione depletion, induced by in vivod administration of L-buthionine sulfoximine and diethylmaleate, did not alter the effect of cysteine, although it decreased the rate of protein synthesis by 32%. The effect of cysteine on protein synthesis does not seem to be related to a perturbatin of the redox state of the NAD+/NADH system or to changes in the rate of gluconeogenic pathway. The following observations indicate that cysteine may stimulate protein syntheis by increasing intracellular levels of aspartate: 1. Amino-oxyacetate, an inhibitor of pyridoxyal-dependent enzymes, inhibits protein labelling and decreases aspartate cellular content, whereas most amino acids accumulate or remain unchanged; 2. Cysteine, in the absence or in the presence of amino-ocycetate, stimulates protein labelling and induces aspartate accumulation, although mot amino acids diminish or remain unchanged.  相似文献   

12.
13.
肝再生   总被引:26,自引:0,他引:26  
肝脏在受到损害或切除之后,可以显示出强大的再生能力。肝再生这一现象早已被人们发现并研究。肝脏再生的启动因素有哪些,又是如何适时终止的?在肝再生过程中,哪些基因的表达发生了变化?哪些信号通路参与了肝再生过程?这些问题一直是研究者关注的焦点。本文将对肝再生研究的这些热点问题进行综述。  相似文献   

14.
Summary A protein fraction has been identified in microsomes prepared from the rat hypothalamus whose rate of synthesis fluctuates diurnally in ovariectomized animals.  相似文献   

15.
The cell monitors and maintains the fidelity of translation during the three stages of protein synthesis: initiation, elongation and termination. Errors can arise by multiple mechanisms, such as altered start site selection, reading frame shifts, misincorporation or nonsense codon suppression. All of these events produce incorrect protein products. Translational accuracy is affected by both cis- and trans-acting elements that insure the proper peptide is synthesized by the protein synthetic machinery. Many cellular components are involved in the accuracy of translation, including RNAs (transfer RNAs, messenger RNAs and ribosomal RNAs) and proteins (ribosomal proteins and translation factors). The yeast Saccharomyces cerevisiae has proven an ideal system to study translational fidelity by integrating genetic approaches with biochemical analysis. This review focuses on the ways studies in yeast have contributed to our understanding of the roles translation factors and the ribosome play in assuring the accuracy of protein synthesis.Received 27 November 2002; received after revision 16 April 2003; accepted 25 April 2003  相似文献   

16.
Increase in intracellular calcium concentration is a prominent feature of ischemia and has been considered a major factor in the initiation of ischemic pathology, which involves inhibition of protein synthesis. A reduction of calcium ion activity during and immediately after in vitro ischemia did not prevent inhibition of protein synthesis in hippocampae slices. When slices were overloaded with calcium by NMDA receptor activation or by the calcium ionophore A23187, no significant inhibition of protein synthesis was observed. We conclude that calcium overload plays only a limited role in ischemic inhibition of protein synthesis.  相似文献   

17.
The small G protein Rho subfamily controls several cellular events such as growth, movement, proliferation and differentiation by rearranging actin and cytoskeleton proteins. Most of these effects are mediated by the activation of growth factor and extracellular matrix molecule receptors, suggesting a role for Rho molecules in the transduction pathway of these receptors. Despite the importance of Rho peptides in fundamental cellular events, data on their subcellular immunolocalisation are sparse: here we investigated the expression and subcellular localisation of RhoA in resting (cultured on plastic) and activated (Matri-cell or hepatocyte growth factor) MDCK cells by immunoperoxidase and immunogold techniques. Resting MDCK cells contain detectable amounts of RhoA mainly localised in the cytoplasm; RhoA expression is significantly enhanced by Matri-cell substrates that promote translocation of RhoA at the membrane level. This enhancing effect is reduced after exposure to hepatocyte growth factor.  相似文献   

18.
The effect of spironolactone (SP) on p-nitrophenol (PNP) glucuronidation was studied in isolated rat hepatocytes with appropriate viability conditions. A significant increase of protein concentration and PNP glucuronidation was found in the hepatocytes from SP-treated rats. Increased enzyme activity apparently was related to the SP dose. The results favor the conclusion that SP may induce PNP glucuronidation in the hepatocyte.  相似文献   

19.
20.
D Riendeau  E Meighen 《Experientia》1985,41(6):707-713
The properties of enzymatic systems involved in the synthesis of long chain aldehydes and alcohols have been reviewed. Fatty acid and acyl-CoA reductases are widely distributed and generate fatty alcohols for ether lipid and wax ester synthesis as well as fatty aldehydes for bacterial bioluminescence. Fatty alcohol is generally the major product of fatty acid reduction in crude or membrane systems, although reductases which release fatty aldehydes as products have also been purified. The reduction of fatty acid proceeds through the ATP-dependent formation of acyl intermediates such as acyl-CoA and acyl protein, followed by reduction to aldehyde and alcohol with NAD(P)H. In most cases, both the rate of fatty acid conversion and acyl chain specificity of the reaction are determined at the level of reduction of the intermediate. The reduction of fatty acids represents the major pathway for the control of the synthesis of fatty aldehydes and alcohols. Several other enzymatic reactions involved in lipid degradation also release fatty aldehydes but do not appear to play an important role in long chain alcohol synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号