首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sosulski DL  Bloom ML  Cutforth T  Axel R  Datta SR 《Nature》2011,472(7342):213-216
Sensory information is transmitted to the brain where it must be processed to translate stimulus features into appropriate behavioural output. In the olfactory system, distributed neural activity in the nose is converted into a segregated map in the olfactory bulb. Here we investigate how this ordered representation is transformed in higher olfactory centres in mice. We have developed a tracing strategy to define the neural circuits that convey information from individual glomeruli in the olfactory bulb to the piriform cortex and the cortical amygdala. The spatial order in the bulb is discarded in the piriform cortex; axons from individual glomeruli project diffusely to the piriform without apparent spatial preference. In the cortical amygdala, we observe broad patches of projections that are spatially stereotyped for individual glomeruli. These projections to the amygdala are overlapping and afford the opportunity for spatially localized integration of information from multiple glomeruli. The identification of a distributive pattern of projections to the piriform and stereotyped projections to the amygdala provides an anatomical context for the generation of learned and innate behaviours.  相似文献   

2.
The mammalian olfactory system mediates various responses, including aversive behaviours to spoiled foods and fear responses to predator odours. In the olfactory bulb, each glomerulus represents a single species of odorant receptor. Because a single odorant can interact with several different receptor species, the odour information received in the olfactory epithelium is converted to a topographical map of multiple glomeruli activated in distinct areas in the olfactory bulb. To study how the odour map is interpreted in the brain, we generated mutant mice in which olfactory sensory neurons in a specific area of the olfactory epithelium are ablated by targeted expression of the diphtheria toxin gene. Here we show that, in dorsal-zone-depleted mice, the dorsal domain of the olfactory bulb was devoid of glomerular structures, although second-order neurons were present in the vacant areas. The mutant mice lacked innate responses to aversive odorants, even though they were capable of detecting them and could be conditioned for aversion with the remaining glomeruli. These results indicate that, in mice, aversive information is received in the olfactory bulb by separate sets of glomeruli, those dedicated for innate and those for learned responses.  相似文献   

3.
Target neuron prespecification in the olfactory map of Drosophila.   总被引:1,自引:0,他引:1  
G S Jefferis  E C Marin  R F Stocker  L Luo 《Nature》2001,414(6860):204-208
In Drosophila and mice, olfactory receptor neurons (ORNs) expressing the same receptors have convergent axonal projections to specific glomerular targets in the antennal lobe/olfactory bulb, creating an odour map in this first olfactory structure of the central nervous system. Projection neurons of the Drosophila antennal lobe send dendrites into glomeruli and axons to higher brain centres, thereby transferring this odour map further into the brain. Here we use the MARCM method to perform a systematic clonal analysis of projection neurons, allowing us to correlate lineage and birth time of projection neurons with their glomerular choice. We demonstrate that projection neurons are prespecified by lineage and birth order to form synapses with specific incoming ORN axons, and therefore to carry specific olfactory information. This prespecification could be used to hardwire the fly's olfactory system, enabling stereotyped behavioural responses to odorants. Developmental studies lead us to hypothesize that recognition molecules ensure reciprocally specific connections of ORNs and projection neurons. These studies also imply a previously unanticipated role for precise dendritic targeting by postsynaptic neurons in determining connection specificity.  相似文献   

4.
Genetic tracing reveals a stereotyped sensory map in the olfactory cortex.   总被引:16,自引:0,他引:16  
Z Zou  L F Horowitz  J P Montmayeur  S Snapper  L B Buck 《Nature》2001,414(6860):173-179
The olfactory system translates myriad chemical structures into diverse odour perceptions. To gain insight into how this is accomplished, we prepared mice that coexpressed a transneuronal tracer with only one of about 1,000 different odorant receptors. The tracer travelled from nasal neurons expressing that receptor to the olfactory bulb and then to the olfactory cortex, allowing visualization of cortical neurons that receive input from a particular odorant receptor. These studies revealed a stereotyped sensory map in the olfactory cortex in which signals from a particular receptor are targeted to specific clusters of neurons. Inputs from different receptors overlap spatially and could be combined in single neurons, potentially allowing for an integration of the components of an odorant's combinatorial receptor code. Signals from the same receptor are targeted to multiple olfactory cortical areas, permitting the parallel, and perhaps differential, processing of inputs from a single receptor before delivery to the neocortex and limbic system.  相似文献   

5.
Cortical representations of olfactory input by trans-synaptic tracing   总被引:1,自引:0,他引:1  
In the mouse, each class of olfactory receptor neurons expressing a given odorant receptor has convergent axonal projections to two specific glomeruli in the olfactory bulb, thereby creating an odour map. However, it is unclear how this map is represented in the olfactory cortex. Here we combine rabies-virus-dependent retrograde mono-trans-synaptic labelling with genetics to control the location, number and type of 'starter' cortical neurons, from which we trace their presynaptic neurons. We find that individual cortical neurons receive input from multiple mitral cells representing broadly distributed glomeruli. Different cortical areas represent the olfactory bulb input differently. For example, the cortical amygdala preferentially receives dorsal olfactory bulb input, whereas the piriform cortex samples the whole olfactory bulb without obvious bias. These differences probably reflect different functions of these cortical areas in mediating innate odour preference or associative memory. The trans-synaptic labelling method described here should be widely applicable to mapping connections throughout the mouse nervous system.  相似文献   

6.
Olsen SR  Bortone DS  Adesnik H  Scanziani M 《Nature》2012,483(7387):47-52
After entering the cerebral cortex, sensory information spreads through six different horizontal neuronal layers that are interconnected by vertical axonal projections. It is believed that through these projections layers can influence each other's response to sensory stimuli, but the specific role that each layer has in cortical processing is still poorly understood. Here we show that layer six in the primary visual cortex of the mouse has a crucial role in controlling the gain of visually evoked activity in neurons of the upper layers without changing their tuning to orientation. This gain modulation results from the coordinated action of layer six intracortical projections to superficial layers and deep projections to the thalamus, with a substantial role of the intracortical circuit. This study establishes layer six as a major mediator of cortical gain modulation and suggests that it could be a node through which convergent inputs from several brain areas can regulate the earliest steps of cortical visual processing.  相似文献   

7.
One defining characteristic of the mammalian brain is its neuronal diversity. For a given region, substructure, layer or even cell type, variability in neuronal morphology and connectivity persists. Although it is well known that such cellular properties vary considerably according to neuronal type, the substantial biophysical diversity of neurons of the same morphological class is typically averaged out and ignored. Here we show that the amplitude of hyperpolarization-evoked sag of membrane potential recorded in olfactory bulb mitral cells is an emergent, homotypic property of local networks and sensory information processing. Simultaneous whole-cell recordings from pairs of cells show that the amount of hyperpolarization-evoked sag potential and current (Ih) is stereotypic for mitral cells belonging to the same glomerular circuit. This is corroborated by a mosaic, glomerulus-based pattern of expression of the HCN2 (hyperpolarization-activated cyclic nucleotide-gated channel 2) subunit of the Ih channel. Furthermore, inter-glomerular differences in both membrane potential sag and HCN2 protein are diminished when sensory input to glomeruli is genetically and globally altered so that only one type of odorant receptor is universally expressed. Population diversity in this intrinsic property therefore reflects differential expression between local mitral cell networks processing distinct odour-related information.  相似文献   

8.
9.
The mammalian olfactory system detects and discriminates thousands of odorants using many different receptors expressed by sensory neurons in the nasal epithelium. Axonal projections from these neurons to the main olfactory bulbs form reproducible patterns of glomeruli in two widely separated regions of each bulb, creating two mirror-symmetric maps of odorant receptor projections. To investigate whether odorant receptors organize neural circuitry in the olfactory bulb, we have examined a genetically modified mouse line, rI7 --> M71, in which a functionally characterized receptor, rI7, has been substituted into the M71 receptor locus. Here we show that despite their ectopic location the resulting glomeruli are responsive to known ligands of the rI7 receptor, attract postsynaptic innervation by mitral/tufted cell dendrites, and endow these cells with responses that are characteristic of the rI7 receptor. External tufted cells receiving input from rI7 --> M71 glomeruli form precise intrabulbar projections that link medial and lateral rI7 --> M71 glomeruli anatomically, thus providing a substrate for coordinating isofunctional glomeruli. We conclude that odorant receptor identity in epithelial neurons determines not only glomerular convergence and function, but also functional circuitry in the olfactory bulb.  相似文献   

10.
The aim of the present study was to investigate the electrophysiological characteristics of the different layers of the olfactory bulb (OB). We used an in vitro OB slice coupled onto a microelectrode array (MEA) for simultaneous detection of spontaneous activities of OB neurons at different sites. Different frequency oscillations dominated the different layers of the OB slice, and the gamma frequency oscillations mainly appeared in the glomerular layer. The waves consisted of negative, positive, and bidirectional spikes, and were distributed at the different layers of the OB slice. Thus, combination of the OB slice with MEA is a useful technique for identifying signal oscillations by multi-site synchronous measurement, and will allow further studies on olfactory information coding and processing function.  相似文献   

11.
Aungst JL  Heyward PM  Puche AC  Karnup SV  Hayar A  Szabo G  Shipley MT 《Nature》2003,426(6967):623-629
Centre-surround inhibition--the suppression of activity of neighbouring cells by a central group of neurons--is a fundamental mechanism that increases contrast in patterned sensory processing. The initial stage of neural processing in olfaction occurs in olfactory bulb glomeruli, but evidence for functional interactions between glomeruli is fragmentary. Here we show that the so-called 'short axon' cells, contrary to their name, send interglomerular axons over long distances to form excitatory synapses with inhibitory periglomerular neurons up to 20-30 glomeruli away. Interglomerular excitation of these periglomerular cells potently inhibits mitral cells and forms an on-centre, off-surround circuit. This interglomerular centre-surround inhibitory network, along with the well-established mitral-granule-mitral inhibitory circuit, forms a serial, two-stage inhibitory circuit that could enhance spatiotemporal responses to odours.  相似文献   

12.
Suh GS  Wong AM  Hergarden AC  Wang JW  Simon AF  Benzer S  Axel R  Anderson DJ 《Nature》2004,431(7010):854-859
All animals exhibit innate behaviours in response to specific sensory stimuli that are likely to result from the activation of developmentally programmed neural circuits. Here we observe that Drosophila exhibit robust avoidance to odours released by stressed flies. Gas chromatography and mass spectrometry identifies one component of this 'Drosophila stress odorant (dSO)' as CO2. CO2 elicits avoidance behaviour, at levels as low as 0.1%. We used two-photon imaging with the Ca2+-sensitive fluorescent protein G-CaMP to map the primary sensory neurons governing avoidance to CO2. CO2 activates only a single glomerulus in the antennal lobe, the V glomerulus; moreover, this glomerulus is not activated by any of 26 other odorants tested. Inhibition of synaptic transmission in sensory neurons that innervate the V glomerulus, using a temperature-sensitive Shibire gene (Shi(ts)), blocks the avoidance response to CO2. Inhibition of synaptic release in the vast majority of other olfactory receptor neurons has no effect on this behaviour. These data demonstrate that the activation of a single population of sensory neurons innervating one glomerulus is responsible for an innate avoidance behaviour in Drosophila.  相似文献   

13.
Attractor dynamics of network UP states in the neocortex   总被引:17,自引:0,他引:17  
Cossart R  Aronov D  Yuste R 《Nature》2003,423(6937):283-288
The cerebral cortex receives input from lower brain regions, and its function is traditionally considered to be processing that input through successive stages to reach an appropriate output. However, the cortical circuit contains many interconnections, including those feeding back from higher centres, and is continuously active even in the absence of sensory inputs. Such spontaneous firing has a structure that reflects the coordinated activity of specific groups of neurons. Moreover, the membrane potential of cortical neurons fluctuates spontaneously between a resting (DOWN) and a depolarized (UP) state, which may also be coordinated. The elevated firing rate in the UP state follows sensory stimulation and provides a substrate for persistent activity, a network state that might mediate working memory. Using two-photon calcium imaging, we reconstructed the dynamics of spontaneous activity of up to 1,400 neurons in slices of mouse visual cortex. Here we report the occurrence of synchronized UP state transitions ('cortical flashes') that occur in spatially organized ensembles involving small numbers of neurons. Because of their stereotyped spatiotemporal dynamics, we conclude that network UP states are circuit attractors--emergent features of feedback neural networks that could implement memory states or solutions to computational problems.  相似文献   

14.
Petrovic M  Hummel T 《Nature》2008,456(7223):800-803
The segregation of axon and dendrite projections into distinct synaptic layers is a fundamental principle of nervous system organization and the structural basis for information processing in the brain. Layer-specific recognition molecules that allow projecting neurons to stabilize transient contacts and initiate synaptogenesis have been identified. However, most of the neuronal cell-surface molecules critical for layer organization are expressed broadly in the developing nervous system, raising the question of how these so-called permissive adhesion molecules support synaptic specificity. Here we show that the temporal expression dynamics of the zinc-finger protein sequoia is the major determinant of Drosophila photoreceptor connectivity into distinct synaptic layers. Neighbouring R8 and R7 photoreceptors show consecutive peaks of elevated sequoia expression, which correspond to their sequential target-layer innervation. Loss of sequoia in R7 leads to a projection switch into the R8 recipient layer, whereas a prolonged expression in R8 induces a redirection of their axons into the R7 layer. The sequoia-induced axon targeting is mediated through the ubiquitously expressed Cadherin-N cell adhesion molecule. Our data support a model in which recognition specificity during synaptic layer formation is generated through a temporally restricted axonal competence to respond to broadly expressed adhesion molecules. Because developing neurons innervating the same target area often project in a distinct, birth-order-dependent sequence, temporal identity seems to contain crucial information in generating not only cell type diversity during neuronal division but also connection diversity of projecting neurons.  相似文献   

15.
The cerebral cortex develops through the coordinated generation of dozens of neuronal subtypes, but the mechanisms involved remain unclear. Here we show that mouse embryonic stem cells, cultured without any morphogen but in the presence of a sonic hedgehog inhibitor, recapitulate in vitro the major milestones of cortical development, leading to the sequential generation of a diverse repertoire of neurons that display most salient features of genuine cortical pyramidal neurons. When grafted into the cerebral cortex, these neurons develop patterns of axonal projections corresponding to a wide range of cortical layers, but also to highly specific cortical areas, in particular visual and limbic areas, thereby demonstrating that the identity of a cortical area can be specified without any influence from the brain. The discovery of intrinsic corticogenesis sheds new light on the mechanisms of neuronal specification, and opens new avenues for the modelling and treatment of brain diseases.  相似文献   

16.
Olsen SR  Wilson RI 《Nature》2008,452(7190):956-960
Olfactory signals are transduced by a large family of odorant receptor proteins, each of which corresponds to a unique glomerulus in the first olfactory relay of the brain. Crosstalk between glomeruli has been proposed to be important in olfactory processing, but it is not clear how these interactions shape the odour responses of second-order neurons. In the Drosophila antennal lobe (a region analogous to the vertebrate olfactory bulb), we selectively removed most interglomerular input to genetically identified second-order olfactory neurons. Here we show that this broadens the odour tuning of these neurons, implying that interglomerular inhibition dominates over interglomerular excitation. The strength of this inhibitory signal scales with total feedforward input to the entire antennal lobe, and has similar tuning in different glomeruli. A substantial portion of this interglomerular inhibition acts at a presynaptic locus, and our results imply that this is mediated by both ionotropic and metabotropic receptors on the same nerve terminal.  相似文献   

17.
Neuronal connectivity is fundamental to information processing in the brain. Therefore, understanding the mechanisms of sensory processing requires uncovering how connection patterns between neurons relate to their function. On a coarse scale, long-range projections can preferentially link cortical regions with similar responses to sensory stimuli. But on the local scale, where dendrites and axons overlap substantially, the functional specificity of connections remains unknown. Here we determine synaptic connectivity between nearby layer 2/3 pyramidal neurons in vitro, the response properties of which were first characterized in mouse visual cortex in vivo. We found that connection probability was related to the similarity of visually driven neuronal activity. Neurons with the same preference for oriented stimuli connected at twice the rate of neurons with orthogonal orientation preferences. Neurons responding similarly to naturalistic stimuli formed connections at much higher rates than those with uncorrelated responses. Bidirectional synaptic connections were found more frequently between neuronal pairs with strongly correlated visual responses. Our results reveal the degree of functional specificity of local synaptic connections in the visual cortex, and point to the existence of fine-scale subnetworks dedicated to processing related sensory information.  相似文献   

18.
Motor neuron columnar fate imposed by sequential phases of Hox-c activity   总被引:1,自引:0,他引:1  
Dasen JS  Liu JP  Jessell TM 《Nature》2003,425(6961):926-933
The organization of neurons into columns is a prominent feature of central nervous system structure and function. In many regions of the central nervous system the grouping of neurons into columns links cell-body position to axonal trajectory, thus contributing to the establishment of topographic neural maps. This link is prominent in the developing spinal cord, where columnar sets of motor neurons innervate distinct targets in the periphery. We show here that sequential phases of Hox-c protein expression and activity control the columnar differentiation of spinal motor neurons. Hox expression in neural progenitors is established by graded fibroblast growth factor signalling and translated into a distinct motor neuron Hox pattern. Motor neuron columnar fate then emerges through cell autonomous repressor and activator functions of Hox proteins. Hox proteins also direct the expression of genes that establish motor topographic projections, thus implicating Hox proteins as critical determinants of spinal motor neuron identity and organization.  相似文献   

19.
J J Chun  M J Nakamura  C J Shatz 《Nature》1987,325(6105):617-620
In the development of the mammalian telencephalon, the genesis of neurons destined for the various layers of the cerebral cortex is preceded by the generation of a population of cells that comes to reside in the subplate and marginal zones (see ref. 2 for nomenclature). In the cat, these cells are present in large numbers during development, when their location is correlated with the arrival and accumulation of ingrowing axonal systems and with synapses. However, as the brain matures, the cells disappear and the white matter and layer 1 of the adult emerge. Their disappearance occurs in concert with the invasion of the cortical plate by the axonal systems and with the elimination of the synapses from the subplate. Here we report that the subplate cells have properties typical of mature neurons. They have the ultrastructural appearance of neurons and receive synaptic contacts. They also have long projections and are immunoreactive for MAP2 (microtubule associated protein 2). Further, subpopulations are immunoreactive for one of several neuropeptides. These observations suggest that during the fetal and early postnatal development of the mammalian telencephalon the subplate cells function as neurons in synaptic circuitry that disappears by adulthood.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号