首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解决Cr20 Ni80电热合金锻造开裂的问题,在Gleeb-1500D热模拟试验机上对该合金进行热压缩试验,研究变形温度为900~1220℃,应变速率为0.001~10 s-1条件下的热变形行为,并根据动态材料模型建立合金的热加工图.合金的真应力-真应变曲线呈现稳态流变特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中稳态流变应力可用双曲正弦本构方程来描述,其激活能为371.29 kJ·mol-1.根据热加工图确定了热变形流变失稳区及热变形过程的最佳工艺参数,其加工温度为1050~1200℃,应变速率为0.03~0.08 s-1.优化的热加工工艺在生产中得到验证.  相似文献   

2.
采用Gleeble 3500热模拟实验机对Ti-20Zr-6.5Al-4V合金进行等温热压缩实验,研究该合金在变形温度为750~1 050℃和变形速率为10~0~10~(-3)s~(-1)条件下的热变形行为和热加工图。研究结果表明:在β单相区,低温高应变速率时,变形初期流变曲线会产生一个显著的应力降现象,随变形温度升高和应变速率降低,应力降现象逐渐消失;高温低应变速率时,流变曲线呈现出典型的动态再结晶特征;在α+β相区,高应变速率时,变形初期流变曲线也会产生一个显著的应力降;随着应变速率降低,应力降现象逐渐消失,流变曲线呈现出连续的流变软化现象;随着应变增大,Ti-20Zr-6.5Al-4V合金在α+β双相区的热变形激活能从414.2 k J/mol降到173.8 kJ/mol,而在β单相区的热变形激活能从123.5 kJ/mol降到95.2 kJ/mol;Ti-20Zr-6.5Al-4V合金最优热加工参数范围分别为750~830℃和10~(-3)~10~(-2) s~(-1)以及925~1 020℃和5.6×10~(-3)~1.2×10~(-1)s~(-1),最优热加工工艺参数组合为750oC和10~(-3)s~(-1)以及950oC,10~(-2)s~(-1)。  相似文献   

3.
对BFe30-1-1合金在变形温度为750~1000℃,应变速率为0.01~10s—1的条件下使用Gleeble-1500D热模拟机进行高温热压缩试验,研究其热加工行为.获得了该合金在高温下的真应力-真应变曲线,并分析了其流变应力的变化规律.构建了BFe30-1-1合金的热变形方程,基于动态材料模型绘制其热加工图,并结合热压缩后的合金微观组织分析热加工图.结果表明:变形条件对加工图有明显影响,在较低的应变速率和较高的温度条件下,能量耗散效率较大.在应变量分别为0.2、0.4、0.6、0.8的热加工图基础上,分析合金在不同变形条件下的动态再结晶组织特性及流变失稳显微组织,最终得到该合金最佳热加工温度为830~950℃,应变速率为0.01~0.05s—1.  相似文献   

4.
在变形温度为900~1060℃和应变速率为0.001~10s-1条件下,对Ti62421s合金进行变形量为60%的热压缩变形,以研究Ti62421s合金的热压缩流变应力行为.研究温度与应变速率对Ti62421s热变形流变应力的影响,建立Ti62421s合金热变形流变应力的本构方程和加工图.研究结果表明:合金在热压缩过程中,流变应力随着应变的增大而增加,达到峰值应力后逐渐趋于平稳:当在高应变速率(10s-1)下变形时,出现不连续屈服现象:应力峰值随应变速率的增大而增大,随温度的升高而呈减小趋势:合金最佳变形工艺参数为:温度θ=980℃,应变速率(ε)=0.01~0.1s-1.  相似文献   

5.
在Gleeble-3800热模拟试验机上进行大变形等温压缩试验,研究Cr-Co-Mo-Ni齿轮钢的高温热变形行为和显微组织,分析材料流变应力与变形温度和应变速率的关系,建立热变形过程的本构方程和热加工图.该材料的流变应力随着温度的升高而下降,随应变速率的增加而增加;用双曲正弦函数式可描述其在热变形过程中的流变应力,热变形活化能为487.21kJ·mol-1;热加工图显示的适宜加工区间为温度1000~1100℃,应变速率0.1 ~1s-1.在热模拟试验基础上进行该钢种锻造工艺的有限元模拟,并结合热加工图分析初锻温度和加工道次对于锻件温度和应变速率的影响,得出适宜的模锻工艺参数为初锻温度1000~1100℃,锻造道次15次.  相似文献   

6.
采用Geeble1500型热模拟试验机对MoLa合金进行等温恒应变速率压缩实验,研究在温度800~1 150℃、应变速率0.001~10 s~(-1)范围内的流变曲线特点及本构方程。结果表明,MoLa合金的流变应力随温度的升高和应变速率的降低而减小,变形机制主要以动态回复软化为主,在应变速率为0.001 s~(-1)时,1 000~1 150℃变形温度下软化现象最为显著,其流变应力随应变的增加而降低;采用双曲正弦函数建立Mo La合金本构方程,其变形激活能为342.68 k J/mol,经过误差分析得出所建立的本构方程的相关系数和相对误差分别为0.9441和7.13%,能够较好地预测该合金的热变形行为。  相似文献   

7.
Ti45Al8Nb2Mn0.2B铸造合金高温形变行为   总被引:2,自引:0,他引:2  
Ti45Al8Nb2Mn0.2B铸造合金在900~1200℃温度范围,1~10-3/s应变速率条件下进行压缩实验,研究其变形特点以及组织变化.结果发现,形变过程中合金的真应力-真应变曲线上存在一个应力峰值,随后流变应力随着应变量的增加逐渐下降并趋于稳态流变.降低温度和提高应变速率都使合金的应力峰值增加.在实验温度范围内合金的应变速率敏感系数为0.10~0.24;在高温形变过程中发生动态再结晶,合金的组织得到明显细化.再结晶晶粒尺寸随温度的降低和应变速率的增加而减小,也就是随Zener-Hollomonc参数的增加而减小;升高形变温度和降低应变速率均促进再结晶过程.  相似文献   

8.
采用Gleeble-3500热模拟机,在变形温度为950~1 150℃、应变速率为0.001~10s-1的条件下,研究了粗大柱状晶粒纯镍的热变形行为和加工图.结果表明:热压缩过程中流变应力随应变速率增大而增大,随变形温度降低而增大.流变应力与应变速率、变形温度之间的关系用Zener-Hollomon参数来描述,热变形激活能为312.4kJ/mol.基于动态材料模型(DMM)热加工图及结合合金相显微组织分析,得到纯镍较优的热加工参数:变形温度为1 060~1 120℃,应变速率为0.03~0.20s-1的蛋形区域.  相似文献   

9.
采用Gleeble-1500热模拟试验机进行了T91钢的压缩试验,研究了变形温度为1100~1250℃、应变速率为0.01~1 s-1时该钢的变形行为,分析了流变应力与应变速率和变形温度之间的关系,计算了高温变形时应力指数和变形激活能,并采用Zener-Hollomon参数法构建该钢高温塑性变形的本构关系,绘制了动态再结晶图和热加工图.结果表明:在试验变形条件范围内,其真应力-真应变曲线呈双峰特征;钢中发生了明显的动态再结晶,且再结晶类型属于连续动态再结晶.T91钢的热变形激活能为484 kJ.mol-1,利用加工图确定了热变形的流变失稳区,结合力学性能,可以优先选择的变形温度为1200~1 250℃,应变速率不高于0.1 s-1.  相似文献   

10.
在温度为700~800℃、应变速率为1~20 s~(-1)、变形程度为60%的变形条件下,对纯钛TA1的高温热变形行为进行热模拟试验研究。以真应力-真应变热模拟试验数据为基础分别建立真应变为0.3和0.6时的热加工图,以确定较佳的热轧温度区域;基于J-C模型建立变形抗力模型并进行验证。研究结果表明:纯钛TA1的流变应力随变形温度升高而降低,随应变速率升高而升高,变形机制受温度和应变速率的影响较大;当温度为700℃、应变速率为1 s~(-1)时,主要以动态回复为主,随着温度和应变速率的增加,动态再结晶程度不断增加;当温度为800℃、应变速率为20 s~(-1)时,再结晶比较充分,组织均匀性良好。利用该变形抗力模型并有效控制轧制温度区间,能够达到较好的轧制效果,轧后钛板性能满足国标要求。  相似文献   

11.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,在变形温度650~850℃、应变速率0.001~10 s-1和总压缩应变量50%的条件下,对Cu-Cr-Zr合金的流变应力行为进行研究.通过应力-应变曲线和显微组织图分析了合金在不同应变速率、不同应变温度下的变化规律.结果表明:应变速率和变形温度对合金再结晶影响较大,变形温度越高,合金越容易发生动态再结晶;应变速率越小,合金也同样容易发生动态再结晶,并且对应的峰值应力也越小.从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程.研究分析Cu-Cr-Zr合金的热加工性能,可为生产实践提供理论指导与借鉴.  相似文献   

12.
在变形温度为950~1 250℃、变形速率为0.01~10 s~(-1)的条件下对Mn-Ni-Mo系核电用钢进行高温热压缩实验。结合Arrhenius双曲正弦本构方程,通过多元线性回归分析获得热激活能Q、结构因子A及材料常数n和α对应变的响应规律,从而建立流变应力与应变量、温度和应变速率之间的变参数Arrhenius本构模型。同时,基于真应力-应变曲线,建立输入参数为温度(T)、变形速率(ε)、应变(ε)和输出参数为流变应力(σ)的神经网络预测模型(ANN)。研究结果表明:神经网络模型(ANN)的预测精度更高,其预测流变应力的平均相对误差为1.31%。根据动态材料模型理论(DMM),构建并分析合金在应变为0.9时的热加工图,确定了最佳热变形工艺参数,即当变形温度为950~1 250℃,应变速率为0.06~0.3 s~(-1)时,峰值功率耗散系数(η)约为0.54;当变形温度为1 100~1 250℃,应变速率为0.3~1 s~(-1)时,峰值功率耗散系数(η)约为0.44。  相似文献   

13.
在Gleeble-3500D热模拟试验机上,对挤压态CuCr25合金在应变速率为0.01~10s~(-1),变形温度为750~900℃的条件下进行恒温压缩模拟实验.结果表明:挤压态CuCr25合金在热变形过程中流变应力随变形温度升高和应变速率降低而减小;可用双曲正弦模型来描述合金的流变行为,其平均激活能为383.4kJ/mol;基于动态材料模型获得了挤压态CuCr25合金的热加工图,并结合金相显微组织分析得到了该合金在实验参数范围内较优的热加工工艺参数范围:加工温度830~900℃,应变速率为0.01~0.1s-1.  相似文献   

14.
为了获得镍钛形状记忆合金塑性加工最佳工艺参数,采用等温压缩实验研究了名义成分为Ni_(50.9)Ti_(49.1)(原子分数)的形状记忆合金在温度为600~1 000℃和应变为0.001~1 s_(-1)条件下的变形行为,并基于动态材料模型构建了该合金的热加工图。结果表明,当应变速率一定时,Ni_(50.9)Ti_(49.1)合金的流变应力随着变形温度的升高而减小;而当变形温度一定时,流变应力随着应变速率的增大而增大。Ni_(50.9)Ti_(49.1)合金的高η值区域随着真应变的增大而逐渐减小,且该Ni_(50.9)Ti_(49.1)合金的热变形失稳区随着真应变的增大而增大,这说明材料的热加工性能随着变形程度的增大而变差。Ni_(50.9)Ti_(49.1)合金的最佳热加工区域为具有高η值的稳定加工区,即温度为700~950℃,应变速率为0.005~0.05 s_(-1)。  相似文献   

15.
采用Gleeble-1500热/力模拟试验机进行压缩实验,研究Al-6Mg-0.4Mn-0.2Sc铝合金在变形温度为300~500℃、应变速率为0.001~10 s-1范围内的变形行为.计算应力指数和变形激活能,并采用Zener-Hollomon参数法构建合金高温塑性变形的本构关系.根据材料动态模型,计算并分析合金的加工图.研究结果表明:热变形过程中的稳态流变应力可用双曲正弦本构关系式来描述,平均激活能为158.92 kJ/mol,大于其自扩散激活能.根据加工图确定了热变形的流变失稳区,并且获得了热变形过程的最佳工艺参数,其热加工温度为430~480℃,应变速率为5~10s-1,温加工温度为320-400℃、应变速率为0.01~0.001 s-1.  相似文献   

16.
Al-Mg-Sc合金热压缩变形的流变应力行为   总被引:4,自引:1,他引:3  
采用热模拟试验对1种Al-Mg-Sc合金进行等温热压缩实验,研究该合金在变形温度为300~450℃,应变速率0.001~1 s-1条件下的热压缩变形流变应力行为.结果表明:该Al-Mg-Sc合金在变形温度为300℃,应变速率0.01~1 s-1的条件下,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征;而在其他条件下,应力达到峰值后随应变的增加而逐渐下降,表现出动态再结晶特征.应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius关系,通过线性回归分析计算出该材料的应变硬化指数n以及变形激活能Q,获得该铝合金高温条件下的流变应力本构方程.  相似文献   

17.
新型Al-Mg-Si-Cu合金热压缩流变应力研究   总被引:1,自引:0,他引:1  
在Gleeble 1500热模拟机上对一种新型Al-Mg-Si-Cu合金热压缩流变应力行为进行了研究,应变速率为 0.005~5 s-1、变形温度为350~550 ℃.结果表明:在较小应变(<0.15)出现一峰值后流变应力随应变的增加有所降低,表现出较明显的动态软化;在实验范围内,流变应力值随着应变速率减少和变形温度升高而降低,可用Zener-Hollomon参数的幂指数关系描述合金的流变应力行为,其变形激活能Q为236 kJ/mol.图5,参11.  相似文献   

18.
Ti45A18Nb2Mn0.2B铸造合金在900~1200℃温度范围,1~10^-3/s应变速率条件下进行压缩实验,研究其变形特点以及组织变化.结果发现,形变过程中合金的真应力一真应变曲线上存在一个应力峰值,随后流变应力随着应变量的增加逐渐下降并趋于稳态流变.降低温度和提高应变~速率都使合金的应力峰值增加.在实验温度范围内合金的应变速率敏感系数为0.10~0.24;在高温形变过程中发生动态再结晶,合金的组织得到明显细化.再结晶晶粒尺寸随温度的降低和应变速率的增加而减小,也就是随Zener-Hollomonc参数的增加而减小;升高形变温度和降低应变速率均促进再结晶过程.  相似文献   

19.
采用Gleeble-1500热压缩模拟试验机在变形温度310~510℃、应变速率0.001~10 s-1的条件下对Al-1.03Mg-1.00Si-0.04Cu铝合金进行热压缩实验,研究该合金热变形行为及热加工特征,建立该合金热变形时的本构方程和加工图.研究结果表明:Al-1.03Mg-1.00Si-0.04Cu铝合金热变形过程中,随着应变速率的增加和变形温度的降低,流变应力上升,合金流变应力达到峰值后曲线呈现稳态流变特征;合金变形激活能Q平均值为170.878kJ/mol,高温变形行为可用双曲正弦形式的本构方程来描述;根据动态材料模型建立合金的加工图,在320~400℃和0.001~0.005 s-1范围内变形时加工图上出现一个动态回复的峰区,峰值效率为27%;Al-1.03Mg-1.00Si-0.04Cu铝合金高温变形时,Mg2Si相的析出有效阻碍了位错运动,合金峰区下变形激活能大于多晶纯铝的激活能.  相似文献   

20.
采用真空热压烧结法制备了CuW30复合材料,在Gleeble-1500D热模拟机上对该材料进行等温热压缩模拟试验.研究了温度为650~950 ℃、应变速率为0.01~5 s-1、最大变形量为50%条件下的流变应力行为.结果表明:CuW30复合材料存在明显的动态再结晶特征.材料的稳态流变应力随应变速率的增大而增大,在恒应变速率条件下,合金的真应力水平随温度的升高而降低.热变形过程的流变应力可用双曲正弦本构关系来描述.在给定的变形条件下,计算的热变形激活能为231.150 kJ/mol.根据试验分析,合金的热加工宜在850~950 ℃范围内进行,应变速率为0.01~0.1 s-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号