首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为寻求同时具有良好的收敛性和数值表现的共轭梯度法,在Wolfe线搜索下,构造一种修正的DY共轭梯度法.该算法产生的搜索方向为充分下降方向,这一性质与所采用的线搜索方法无关.在Wolfe线搜索的条件下证明该算法具全局收敛性.研究结果表明:算法是有效的,尤其对大规模无约束优化问题.  相似文献   

2.
为了寻找同时具有良好的收敛性和数值效果的共轭梯度法.本文将HS方法和DY方法结合,选用Wolfe线搜索,构造出了一类新的混合共轭梯度法.并在Wolfe线搜索的条件下证明了该算法全局收敛性.对新算法进行数值实验,并与HS方法和DY方法的数值结果进行了比较,结果表明新算法是有效的.  相似文献   

3.
提出一种修正的HS共轭梯度法.该算法产生的搜索方向为充分下降方向,且这一性质与所采用的线搜索方法无关.并在Wolfe线搜索的条件下证明了该算法全局收敛性.数值实验结果表明算法是有效的.  相似文献   

4.
提出一类改进的PRP共轭梯度法,该算法采用一个新的公式计算参数并且具有下列性质:1)在任何线搜索下都满足充分下降性;2)继承了PRP方法的重要性质;3)在一些假设条件下具有全局收敛性.初步的数值试验表明,该算法是有效可行的.  相似文献   

5.
给出一类求解非线性无约束优化问题的杂交共轭梯度新算法.证明公式在推广的强Wolfe线搜索下具有充分下降性,并证明该新算法在推广的强Wolfe线搜索下具有全局收敛性.数值结果表明该方法是可行的.  相似文献   

6.
提出了一个不依赖线搜索且具有充分下降性的新的共轭梯度法(ZPRP法),并证明了ZPRP方法在强Wolfe搜索条件下全局收敛.  相似文献   

7.
给出一类求解非线性无约束优化问题修正的共轭梯度类型公式和算法,并证明该公式在广义Wolfe线搜索下具有充分下降性和全局收敛性。  相似文献   

8.
研究了一类非单调线搜索修正DY法,在适当的条件下,对一般非凸函数,证明了在新给出的非单调线搜索下修正的DY共轭梯度方法的全局收敛性,数值结果表明了该算法的有效性。  相似文献   

9.
给出一类搜索方向采用保守策略的新型共轭梯度法,在常规假设条件下得到了算法的全局收敛性结果,并给出算法的数值实验结果.结果表明:相应的算法分别在强Wolfe非精确线搜索参数σ1/4,1/3,1/2的情形下充分下降;新算法适合于求解大型无约束优化问题.  相似文献   

10.
一种修正的共轭梯度法及其全局收敛性   总被引:1,自引:0,他引:1  
根据谱共轭梯度法,提出一种同时吸纳了FR法和PRP法优点的修正的共轭梯度法.该算法在不依赖任何线性搜索的情况下始终产生充分下降方向,并且在精确线性搜索下具有全局收敛性,同时给出相应的数值结果说明该算法是有效的.  相似文献   

11.
刘金魁  王开荣  郑丽 《广西科学》2008,15(4):383-385
给出一种求解无约束优化问题的改进的FR共轭梯度算法,证明该算法在强Wolfe线搜索下具有充分下降性和较好的全局收敛性,并用数值试验说明新算法是有效的。  相似文献   

12.
基于DL共轭梯度方法,提出了一类修正的DL方法来解决无约束优化问题.该方法相对于DL共轭梯度方法具有一个更好的性质,即在强Wolfe线搜索条件下搜索方向具有充分下降性;证明了该方法在强Wolfe线搜索条件具有全局收敛性.  相似文献   

13.
提出了两个修正的DY(Dai-Yuan)共轭梯度法(ZDY1算法和ZDY2算法),并证明这两个修正的共轭梯度法公式β(1)k和β(2)k在Wolfe下都是全局收敛的,其中一个在Wolfe线搜索下是下降的,另一个在不依赖于任何线搜索下充分下降。在求解大规模的非线性优化问题的过程中,这些结果对加快算法的收敛速度和增强算法的收敛性提供了理论依据。
  相似文献   

14.
共轭梯度法因为其迭代简单和低存储等特点,在工程问题、金融模型等许多实际领域中得到广泛的应用;针对大规模无约束优化问题,提出了一类混合的DL-WYL共轭梯度法——LHSDL方法,它可以看作是一类修正的DL共轭梯度法,即利用一个数值效果和理论结果均良好的Wei-Yao-Liu型共轭梯度法的共轭参数去修正DL共轭梯度法的第一...  相似文献   

15.
给出一类共轭梯度方法.在迭代中,步长由广义Wolfe线搜索条件确定,产生的方向具有充分下降性。在适当假设下,证明了算法是全局收敛的.  相似文献   

16.
针对张丽提出的一种修正的PRP方法——NPRP法,在广义Wolfe下证明了NPRP法的全局收敛性.  相似文献   

17.
为有效求解大规模无约束优化问题,提出了一类新的混合共轭梯度法.该方法在每步迭代中都不依赖于函数的凸性和搜索条件而自行产生充分下降方向.在适当的条件下,获证了在Armijo搜索下,即使求解非凸函数极小化的问题,算法也具有全局收敛性.同时,数值实验表明所提算法可以有效求解优化测试问题.  相似文献   

18.
针对无约束优化问题,利用两项共轭梯度法(DL方法)去逼近改进的HS三项共轭梯度法,提出了改进的DL共轭梯度法即MDL共轭梯度法.该方法相对于DL方法具有一个更好的性质,即该共轭梯度法的搜索方向不依赖任何线搜索就可满足充分下降条件,理论上证明了该方法在Wolfe线搜索条件下对一般函数具有全局收敛性.  相似文献   

19.
给出一类求解非线性无约束优化问题的共轭梯度新算法。 在强Wolfe-Powell线搜索下所给公式具有充分下降性, 所给该新算法具有全局收敛性。  相似文献   

20.
给出一种求解无约束优化问题的新线搜索,证明由新线搜索和DY公式产生的算法具有全局收敛性,再对此算法进行数值试验,并将其数值结果与Wolfe线搜索下PRP方法、DY方法以及另外几种线搜索下DY共轭梯度法的数值结果进行比较来验证新算法是有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号