首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The catfish, Ictalurus punctatus is an important model system for the study of the biochemical mechanisms of taste reception. A detailed lipid analysis of epithelial tissue from the taste organ (barbel) of the catfish has been performed. Polar lipids account for 62 +/- 1% of the total, neutrals for 38 +/- 1%. Phosphatidyl-cholines, serines and ethanolamines are the major constituents of the polar fraction. Plasmalogen concentration is high relative to that of non-neural tissues. [14C]-Acetate is incorporated into cell lipid fractions after incubation of barbel tissue at 37 degrees C for 60 min. Percentage amounts of most lipids change with time during this in vitro incubation. The phospholipids are the most metabolically active fractions. This work yields information for continuing reconstitution experiments and indicates that the taste epithelium of this important model system is a metabolically active tissue capable of supporting lipid turnover/synthesis.  相似文献   

2.
Erythrocytes from normal subjects and from cases of iron deficiency anemia were exposed to hydrogen peroxide and the extent of membrane lipid peroxidation studied. Significantly less peroxidation was observed in intact anemic erythrocytes compared to normal. However, when isolated membrane lipids were subjected to peroxidation, there was no significant difference between the two groups. It is unlikely that lipid peroxidation per se plays a major role in the reported decrease in red cell life-span in iron deficiency.  相似文献   

3.
Summary Erythrocytes from normal subjects and from cases of iron deficiency anemia were exposed to hydrogen peroxide and the extent of membrane lipid peroxidation studied. Significantly less peroxidation was observed in intact anemic erythrocytes compared to normal. However, when isolated membrane lipids were subjected to peroxidation, there was no significant difference between the two groups. It is unlikely that lipid peroxidation per se plays a major role in the reported decrease in red cell life-span in iron deficiency. *** DIRECT SUPPORT *** A2025146 00003  相似文献   

4.
Summary The catfish,Ictalurus punctatus is an important model system for the study of the biochemical mechanisms of taste reception. A detailed lipid analysis of epithelial tissue from the taste organ (barbel) of the catfish has been performed. Polar lipids account for 62±1% of the total, neutrals for 38±1%. Phosphatidyl-cholines, serines and ethanolamines are the major constitutents of the polar fraction. Plasmalogen concentration is high relative to that of non-neural tissues. [14C]-Acetate is incorporated into cell lipid fractions after incubation of barbel tissue at 37°C for 60 min. Percentage amounts of most lipids change with time during this in vitro incubation. The phospholipids are the most metabolically active fractions. This work yields information for continuing reconstitution experiments and indicates that the taste epithelium of this important model system is a metabolically active tissue capable of supporting lipid turnover/synthesis.This work was supported in part by NIH Research Grant No. NS-23622, NS-22620, and by the Veterans Administration.  相似文献   

5.
Summary Red cells and membranes prepared from them were treated with graded amounts of palmitoyl, myristoyl and lauroyl lysolecithins. There was no release of phospholipids from the intact red cells in the absence of hemolysis. The solubilization pattern of lipid and protein from the red cell membranes by lysolecithins varies with their chain length.The skillful technical assistance of Mrs Isca Levy is gratefully acknowledged.  相似文献   

6.
Summary The lipid composition of two tuatara eggs was examined. The eggs contained triacylglycerol (80%) and phospholipid (12%) as their major lipid fractions. Fatty acid analyses of the individual lipid classes indicated the presence of essential fatty acids, linoleic and arachidonic acids. The quantity of such acids in the egg yolk lipids would suggest they are factors for survival as illustrated in other species.  相似文献   

7.
Lipid transport pathways in mammalian cells   总被引:2,自引:0,他引:2  
Summary A major deficit in our understanding of membrane biogenesis in eukaryotes is the definition of mechanisms by which the lipid constituents of cell membranes are transported from their sites of intracellular synthesis to the multiplicity of membranes that constitute a typical cell. A variety of approaches have been used to examine the transport of lipids to different organelles. In many cases the development of new methods has been necessary to study the problem. These methods include cytological examination of cells labeled with fluorescent lipid analogs, improved methods of subcellular fractionation, in situ enzymology that demonstrates lipid translocation by changes in lipid structure, and cell-free reconstitution with isolated organelles. Several general patterns of lipid transport have emerged but there does not appear to be a unifying mechanism by which lipids move among different organelles. Significant evidence now exists for vesicular and metabolic energy-dependent mechanisms as well as mechanisms that are clearly independent of cellular ATP content.  相似文献   

8.
Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.  相似文献   

9.
Summary After morphine injection lipid accumulation in mouse hepatocytes begins within 2 h and continues for 24 h when most hepatocytes are filled with lipid droplets. In spite of morphine maintenance the liver recovers as the accumulated lipids are coupled with protein and subsequently transported and released into the perisinusoidal space of Disse.Supported by USPHS Grants GM 15490, 5 SO7 RR05386-16 and DA-01310.  相似文献   

10.
The functional significance of the lipid-protein interface in photosynthetic membranes, mainly in thylakoids, is reviewed with emphasis on membrane structure and dynamics. The lipid-protein interface is identified primarily by the restricted molecular dynamics of its lipids as compared with the dynamics in the bulk lipid phase of the membrane. In a broad sense, lipid-protein interfaces comprise solvation shell lipids that are weakly associated with the hydrophobic surface of transmembrane proteins but also include lipids that are strongly and specifically bound to membrane proteins or protein assemblies. The relation between protein-associated lipids and the overall fluidity of the thylakoid membrane is discussed. Spin label electron paramagnetic resonance spectroscopy has been identified as the technique of choice to characterize the protein solvation shell in its highly dynamic nature; biochemical and direct structural methods have revealed an increasing number of protein-bound lipids. The structural and functional roles of these protein-bound lipids are mustered, but in most cases they remain to be determined. As suggested by recent data, the interaction of the non-bilayer-forming lipid, monogalactosyldyacilglycerol (MGDG), with the main light-harvesting chlorophyll a/b-binding protein complexes of photosystem-II (LHCII), the most abundant lipid and membrane protein components on earth, play multiple structural and functional roles in developing and mature thylakoid membranes. A brief outlook to future directions concludes this review.  相似文献   

11.
Ehrlich carcinoma and EL-4 thymoma ascites cells were subjected in vitro to heat shock, ATP depletion, oxidative stress, Ca2+ overlading and iodoacetamide treatment. After the transient stresses, Triton (X-100)-insoluble TIS) fractions were isolated from the cells and analysed by electrophoresis and immunoblotting. All stresses used caused rapid aggregation of cell proteins. This was manifested in a signficant rise in protein content in the TIS fractions. The protein increase was mostly due to and increase in the insolubility of actin, 57 kDa protein of intermediate filaments, 70 kDa heat shock protein (HSP 70), and some specific proteins whose insolubilization was a characteristic sign for each type of cell injury. Different survival rates in the cell lines after either stress corrlated well with differences in their TIS protein accretion. Possible mechanisms for stress-induced protein aggregation and its relationship with cell viability are suggested.  相似文献   

12.
P-glycoprotein (P-gp) is an active membrane transporter responsible for cell detoxification against numerous amphiphilic compounds, leading to multidrug resistance in tumor cells. It displays entangled connections with its membrane environment since it recognizes its substrates within the cytosolic leaflet and it also translocates some endogenous lipids to the exoplasmic leaflet. Regarding its relationships with membrane microdomains, ‘lipid rafts’, a literature analysis concludes that (i) P-gp also exists in rafts and non-raft membrane domains, depending on the cell considered, the experimental conditions and the method used to test it; (ii) cholesterol has a positive influence on P-gp function, and this may be a direct effect of the free cholesterol present in membrane or an indirect effect mediated by the cholesterol-enriched microdomains; (iii) when present in rafts, P-gp interacts with protein partners regulating its activity; (iv) P-gp is a lipid translocase that handles the raft-constituting lipids with particular efficiency, and it also influences membrane trafficking in the cell. Received 18 November 2005; received after revision 23 December 2005; accepted 12 January 2006  相似文献   

13.
It is now well demonstrated that the repertoire of T cells includes not only cells that recognize specific MHC-presented peptide antigens, but also cells that recognize specific self and foreign lipid antigens. This T cell recognition of lipid antigens is mediated by a family of conserved MHC class I-like cell surface glycoproteins known as CD1 molecules. These are specialized antigen-presenting molecules that directly bind a wide variety of lipids and present them for T cell recognition at the surface of antigen-presenting cells. Distinct populations of T cells exist that recognize CD1-presented lipids of microbial, environmental or self origin, and these T cells participate in immune responses associated with infectious, neoplastic, autoimmune and allergic diseases. Here we review the current knowledge of the biology of the CD1 system, including the structure, biosynthesis and trafficking of CD1 molecules, the structures of defined lipid antigens and the types of functional responses mediated by T cells specific for CD1-presented lipids.  相似文献   

14.
Annexins are a family of structurally related, Ca2+-sensitive proteins that bind to negatively charged phospholipids and establish specific interactions with other lipids and lipid microdomains. They are present in all eukaryotic cells and share a common folding motif, the “annexin core”, which incorporates Ca2+- and membrane-binding sites. Annexins participate in a variety of intracellular processes, ranging from the regulation of membrane dynamics to cell migration, proliferation, and apoptosis. Here we focus on the role of annexins in cellular signaling during stress. A chronic stress response triggers the activation of different intracellular pathways, resulting in profound changes in Ca2+ and pH homeostasis and the production of lipid second messengers. We review the latest data on how these changes are sensed by the annexins, which have the ability to simultaneously interact with specific lipid and protein moieties at the plasma membrane, contributing to stress adaptation via regulation of various signaling pathways.  相似文献   

15.
Whereas research on CD1d has emphasized a few glycosyl ceramides, the broader family of four human CD1 antigen-presenting molecules binds hundreds of distinct self-lipids. Individual lipid types bind within CD1 grooves in different ways, such that they partially fill the groove, match the groove volume, or protrude substantially from the groove. These differing modes of binding can now be connected to differing immunological functions, as individual lipids can act as stimulatory antigens, inhibitory ligands, or space-filling scaffolds. Because each type of CD1 protein folds to produce antigen-binding grooves with differing sizes and shapes, CD1a, CD1b, CD1c, CD1d, and CD1e have distinct mechanisms of capturing self-lipids and exchanging them for foreign lipids. The size discrepancy between endogeneous lipids and groove volume is most pronounced for CD1b. Recent studies show that the large CD1b cavity can simultaneously bind two self-lipids, the antigen, and its scaffold lipid, which can be exchanged for one large bacterial lipid. In this review, we will highlight recent studies showing how cells regulate lipid antigen loading and the roles CD1 groove structures have in control of the presentation of chemically diverse lipids to T cells.  相似文献   

16.
Addition of co-lipids into cationic lipid formulations is considered as promoting cell delivery of DNA by enhancing fusion processes with cell membranes. Here, by combining FRET and confocal microscopy, we demonstrate that some cationic lipids do not require a co-lipid to fuse efficiently with cells. These cationic lipids are able to self-organize into bilayers that are stable enough to form liposomes, while presenting some destabilizing properties reminiscent of the conically shaped fusogenic co-lipid, DOPE. We therefore analyzed the resident lipid structures in cationic bilayers by molecular dynamics simulations, clustering the individual lipid structures into populations of similarly shaped molecules, as opposed to the classical approach of using the static packing parameter to define the lipid shapes. Comparison of fusogenic properties with these lipid populations suggests that the ratio of cylindrical versus conical lipid populations correlates with the ability to fuse with cell membranes.  相似文献   

17.
Triacylglycerols (TAGs), steryl esters (SEs) and wax esters (WEs) form the group of neutral lipids. Whereas TAGs are present in all types of cell, the occurrence of SEs in prokaryotes is questionable, and the presence of WEs as storage molecules is restricted to plants and a few bacteria. Here, we summarize recent knowledge on the formation, storage and degradation of TAGs and SEs in various cell types. We describe the biochemical pathways involved in TAG and SE synthesis and discuss the subcellular compartmentation of these processes. Recently, several novel enzymes governing the metabolism of storage lipids have been identified and characterized. Regulatory aspects of neutral lipid storage are just beginning to be understood. Finally, we describe consequences of defects in neutral lipid metabolism. Since severe diseases like atherosclerosis, obesity and type 2 diabetes are caused by lipid accumulation, mechanisms underlying neutral lipid synthesis, depot formation and mobilization are of major interest for curing such diseases that are increasingly associated with modern civilization. Received 18 January 2006; received after revision 7 March 2006; accepted 16 March 2006  相似文献   

18.
K W Wirtz  T W Gadella 《Experientia》1990,46(6):592-599
We have described the mode of action of the phosphatidylcholine transfer protein (PC-TP), the phosphatidylinositol transfer protein (PI-TP) and the non-specific lipid transfer protein (nsL-TP) isolated from bovine and rat tissues. PC-TP and PI-TP specifically bind one phospholipid molecule to be carried between membranes. PC-TP, and most likely PI-TP as well, have independent binding sites for the sn-1- and sn-2-fatty acyl chains. These sites have different properties, which may explain the ability of PC-TP and PI-TP to discriminate between positional phospholipid isomers. nsL-TP, which is identical to sterol carrier protein 2, transfers all common phospholipids, cholesterol and oxysterol derivatives between membranes. This protein is very efficient in mediating a net mass transfer of lipids to lipid-deficient membranes. Models for its mode of action, which is clearly different from that of PC-TP and PI-TP, are presented.  相似文献   

19.
Eukaryotic cells store excess fatty acids as neutral lipids, predominantly triacylglycerols and sterol esters, in organelles termed lipid droplets (LDs) that bulge out from the endoplasmic reticulum. LDs are highly dynamic and contribute to diverse cellular functions. The catabolism of the storage lipids within LDs is channeled to multiple metabolic pathways, providing molecules for energy production, membrane building blocks, and lipid signaling. LDs have been implicated in a number of protein degradation and pathogen infection processes. LDs may be linked to prevalent human metabolic diseases and have marked potential for biofuel production. The knowledge accumulated on LDs in recent years provides a foundation for diverse, and even unexpected, future research. This review focuses on recent advances in LD research, emphasizing the diverse physiological roles of LDs in the model system of budding yeast.  相似文献   

20.
The cytosolic lipid-binding proteins (cLBPs) comprise a large family of small (14-15 kDa) intracellular proteins involved in the transport of small lipids, including fatty acids and retinoids within cells. Their presumed function is to solubilise, protect from chemical damage and deliver to the correct destination lipids for purposes ranging from energy metabolism (e.g. fatty acids) to signalling, gene activation and cellular differentiation (e.g. retinoids and eicosanoids). It is therefore probable that cLBPs interact directly with cellular components (membranes and/or proteins) to collect and deposit their ligands, and some external features of the different cLBPs may be involved in such interactions and determine which cellular component (integral membrane or cytosolic proteins, or membranes of different lipid compositions or domain structures) with which a given cLBP will interact. Here we have focussed on a previously unrecognised feature of cLBPs which descriminates between those for which there is empiral evidence for direct interaction with membranes, and those which do not. This is a group of bulky hydrophobic amino acid side chains (e.g. tryptophans, phenylalanines, leucines) which project directly into solvent adjacent to the portal of entry and exit of the lipid ligands. Such side chains are usually found internal to proteins, but are common at sites of protein:protein or protein:membrane interactions. These 'sticky fingers' could therefore be critical to the nature and specificity of the interactions cLBPs undergo in the web of cross-traffic in lipid movements within cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号