首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 977 毫秒
1.
水源热泵在空调系统中的设计与应用   总被引:6,自引:0,他引:6  
从水源热泵的概念和工作原理出发,介绍了水源热泵空调系统的特点,分析了水源热泵中央空调机组的运行工况,给出了制冷、制热性能曲线.通过水源热泵应用实例分析,可以看出水源热泵的优越性.并探讨了水源热泵应用中存在的问题.从分析中可以知道水源热泵效率高,应用范围广泛,适合于大、中型集中空调之用.  相似文献   

2.
水源热泵是一种利用地下浅层地热资源的既可供热又可制冷的高效节能空调系统。水源热泵通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。宇泰大厦工程采用水源热泵中央空调系统,解决了供暖、空调和卫生热水问题,并且造价和运行费用低、节约能源、安全环保。  相似文献   

3.
水源热泵系统既可冬季供暖,亦可夏季制冷,同时还可以提供生活热水,一机多用,大大提高系统效率,节省大量的运行费用,从而在减少投资额的同时提高了建筑物的功能和档次.但在水源热泵系统的设计和应用中,应考虑到机房的配套设施、地下水取水和人工补给方式、水层的地理结构.  相似文献   

4.
主要介绍了水源热泵的含义,水源热泵的制冷循环和热泵循环,以及水源热泵循环在logp-h图上的表示,并结合logp-h对系统的经济性指标制冷系数和泵热系数进行了理论上的分析。  相似文献   

5.
潘二蕊  柯红 《科技信息》2010,(19):I0342-I0342
本文首先介绍了水源热泵技术的概念和工作原理,以及水源热泵在实际工程中受到的局限性。根据洛阳规划设计院办公楼水源热泵空调系统工程的设计方案,阐述了水源热泵中央空调系统的使用灵活性,可满足同时冬季供热,夏季制冷,及热水供应,能最大限度地满足用户的需要,并与冬季使用锅炉及夏季使用普通空调在能源利用角度作了对比,得出水源热泵技术是利用可再生能源的一种技术,该技术比传统供热、制冷技术更为清洁、环保、节能。并且根据本项目地理位置的水资源条件分析,得出本项目可以使用水源热泵中央空调系统。  相似文献   

6.
杜云帆  王蓓 《甘肃科技》2010,26(12):149-150
介绍了华清润苑住宅小区燃煤锅炉供暖、水源热泵系统供暖的方案,分析了两方案在寿命期内经济效益、节能环境效益;得出了水源热泵系统是一种值得推崇的采暖空调方式的结论。  相似文献   

7.
以容量近乎无限的海水为冷热源,应用大型制冷&热泵系统,为沿海城市集中进行冷暖供应,可使城市夏天制冷、冬天供暖的工程投资及运行费用大幅度降低。此外,制冷&热泵系统还可与海水淡化、制盐装置进行有机综合,构建冷、热、水、盐4种产品联产的集成系统,具有节能、节材、环保等特点,对探索解决目前夏天制冷电力消耗大、冬天燃煤供暖污染环境、淡水资源紧张、海水资源利用率不高等与国计民生和城市发展有重大关系的系列问题,提供一个较理想的解决方案。  相似文献   

8.
该技术是利用矿井生产过程中涌出的废水作为冷热源,通过水源热泵空调机组实现矿井废水与矿井进风流之间的热量转换,对风流实现一次性升温或降温。冬季取代传统的燃煤锅炉为井口供暖,夏季取代传统的制冷设备为井口制冷,实现一机多用,节省设备投资和降低运行成本。  相似文献   

9.
水源热泵应用低温地热的节能效果分析   总被引:5,自引:0,他引:5  
水源热泵是商业,公用建筑供暖空调的一种有效装置。WLHP系统通过热回收和热平衡取得节能效果。WLHP系统的水源的温度一般控制在16℃-32℃之间,空调工况下,热泵的排热通过冷却塔散热控制水源温度不超过32℃。供暖工况时,热泵的吸热通过加热器控制水源温度不低于16℃。同时供冷供暖是WLHP系统独特的运行模式。  相似文献   

10.
目的利用中一精锻有限公司锻造工艺中高频加热冷却水余热及当地丰富的地下水资源,建立可以为厂区供暖的余热回收系统,解决工厂在冬季无配套设施的供暖需求.方法构建基于水源热泵技术为基础的高效余热回收系统,主要包含五个子系统,该系统将低品位热源进行转移、集中以满足供暖需求,并运用蓄热水池对供暖温度进行调节·结果在冬季放假与正常工作期间两种工况进行实地测量,在无余热情况下,工厂室内温度可以达到7℃以上,满足工厂保温要求;当环境温度为-25℃,三台热泵机组同时运行时,稳定供暖出水温度为55℃、供暖回水温度为51℃,其厂房温度稳定在15℃以上,达到设计要求;通过数据计算在热泵稳定状态下制热能效比保持在6.0左右.结论通过锻造余热回收系统,保证了锻造生产中冷却水的供应,为厂房和办公室的供暖和生活用水提供了生活保障,减少了对环境的热污染.  相似文献   

11.
 热泵技术自20世纪90年代引进国内以来,得到了快速发展。20多年来,全国利用各类热泵技术(地源,地下水源,其他各种热源,如地表水、海水以及中/污水等)进行的供暖-制冷-生活用热水的所谓“三联供”已在各地推广、应用,并得到建设部门和广大用户的认可。特别是2008年北京奥运会、2010年上海世博会热泵技术的应用更使这一技术声名鹊起。截至2012年底,全国利用热泵技术供暖的总建筑面积已达到2.1亿m2,取得了很好的效果。2013年1月,国家能源局等4部委公布的“关于促进地热能开发利用的指导意见”中明确指出要“积极推广浅层地热能的开发利用”。并规定:“到2015年,全国地热供暖面积要达到5亿m2”,其中采用热泵技术的供暖面积将大幅度增加。这是一项新的挑战和一次重要机遇。  相似文献   

12.
在北方严寒地区,电厂循环冷却水蕴含的大量的低温余热,可以作为热泵的冷热源向建筑物供暖。本文介绍了电厂循环冷却水源热泵系统中存在的水质、腐蚀、结垢等问题,以及在解决这些问题时要注意的事项。  相似文献   

13.
微型热泵是指特征尺寸为"厘米级"的热泵,可用于建筑物、交通工具、衣服或其它装置的供暖或制冷.微电子机械系统(MEMS)的迅速发展,使过程机械装置的微型化和轻量化成为可能,将MEMS技术应用于热泵,其体积和传统装置相比可以缩小到60倍以上.对几种微制造技术进行了比较,并介绍了MEMS技术在微型热泵中的应用.  相似文献   

14.
将电厂冷却水作为热泵的低位热源,根据水源热泵的技术特点分析余热热泵的节能原理及余热热泵系统的可行性,讨论了其在节能环保方面的巨大优越性.结合工程实际,应用余热热泵给长春某小区冬季供暖,通过计算比较分析,得出余热热泵具有很好的经济、环境、社会效益.  相似文献   

15.
分散式地环热泵空调系统是利用地下土壤中的地热资源通过水环路将此小型机组并联在一起,构一个以回收建筑物内部余热为主要特点的热泵供冷、供暖的空调系统。中央式地源热泵空调系统是利用地下土壤中的地热资源通过室外地下水环路系统输送给集中设置在一个机房内的所有机组,机组换热、制冷后通过空气输送管道或水系统送入各个房间空调系统。  相似文献   

16.
多能互补耦合系统是未来能源供应的主要形式,其核心在于因地制宜建立最小能耗组合不同的可再生能源,使得各种能源间优劣互补、相辅相成。本文基于TRNSYS软件对南京地区某科研楼的多能互补耦合示范项目进行模拟,得到太阳能-地源热泵-水源热泵-空气源热泵多能互补耦合系统,全天候保证科研楼的供暖和制冷需求,维持55~70℃的热水供应。系统的全年最小能耗为125 MW·h,能效比(COP)约为3。系统的总造价为31.89万元,运行约2年即可回归成本,具有良好的经济效益。  相似文献   

17.
水源侧大温差热泵系统运行能耗分析   总被引:1,自引:1,他引:0  
水源热泵技术是一种主要回收低温余热的节能技术。利用水源热泵系统试验台研究了大温差(温差为6~10℃)运行热泵的特性,比较了各温差段热泵的主机和给水泵单位供热能耗的关系。实验结果表明:随着温差增大,虽然主机单位供热能耗不断增大,但是热泵系统总体的单位供热能耗呈现下降趋势。通过对热泵系统制冷系数(coefficient to performance,COP)分析可知,在温差为7℃时,热泵系统COP最大,因此热泵大温差运行时循环水温差控制在7~9℃比较合适,机组整体能耗低,节能效果明显。  相似文献   

18.
深井水源热泵技术经济分析   总被引:6,自引:0,他引:6  
为了研究深井水源热泵空调系统在我国北方地区的应用可行性和正确性,采用实验的方法,实测了深井水源热泵空调系统的年运行费用和全年能耗,并据此分析其初投资和运行费用、能源效率以及环境效益.最后,应用费用年值法,比较分析了数种供暖空调方案的费用年值,得到了不同情况下冷热源方案的最佳选择.在当地政府对地下水不收费用的情况下,深井水源热泵系统仅次于热网(热电联产)+冷水机组方案,优于热网(燃煤锅炉)+冷水机组系统.  相似文献   

19.
海水热源热泵是活用海水热能的方法之一。它能有效地利用海水年间温度变化小这一特性,夏季以海水作为制冷空调等使用的冷却源,冬季以海水作为供暖空调用的加热源,组成热泵循环。由于海水升温幅度小,可用高的 COP(成绩系数)进行高效热泵运行,节能效果好。现在世界各国已有不少海水热源热泵实用机。  相似文献   

20.
寒区调峰型地表水源热泵系统的供热性能研究   总被引:1,自引:1,他引:0  
地表水源热泵具有重要节能环保与经济意义,但寒区冬季水温过低导致常需采用调峰型地表水源热泵系统.在介绍前置式系统和后置式系统两种形式的基础上,对调峰运行阶段的系统供热运行性能作了数学建模,并结合算例作了比较分析.结果表明后置式系统的运行性能与经济性均较好,每个供暖期可节省运行费6.65元/m2,这为系统方案的设计提供了有...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号