首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
On a cellular level, formation of memory is based on a selective change in synaptic efficacy that is both fast and, in case of important information, long-lasting. Rapidity of cellular changes is achieved by modifying preexisting synaptic molecules (receptors, ion channels), which instantaneously alters the efficacy of synaptic transmission. Endurance, that is the formation of long-term memory (LTM), is based on transient and perhaps also long-lasting changes in protein synthesis. A number of different methods exist to interfere with the synthesis of specific proteins or proteins in general. Other methods, in turn, help to identify proteins whose synthesis is changed following learning. These mostly molecular methods are briefly described in the present review. Their successful application in a variety of memory paradigms in invertebrates and vertebrates is illustrated. The data support the importance of selective changes in gene expression for LTM. Proteins newly synthesized during memory consolidation are likely to contribute to restructuring processes at the synapse, altering the efficiency of transmission beyond the scope of STM. Increased or, less often, decreased synthesis of proteins appears during specific time windows following learning. Recent evidence supports older data suggesting that two or even more waves of protein synthesis exist during the consolidation period. It is expected that the new molecular methods will help to identify and characterize molecules whose expression changes during LTM formation even in complex vertebrate learning paradigms.  相似文献   

3.
Memory     
The molecular mechanisms underlying the induction and maintenance of memory are highly dynamic and comprise distinct phases covering a time window from seconds to even a lifetime. Neuronal networks, which contribute to these processes, have been extensively characterized on various levels of analysis, and imaging techniques allow monitoring of both gross brain activity as well as functional changes in defined brain areas during the time course of memory formation. New techniques developed in honeybees and fruit flies even allow for manipulation of neuronal networks and molecular cascades in a short temporal domain while a living animal under observation acquires new associative memories. These advantages make honeybees and flies ideal organisms to study transient molecular events underlying dynamic memory processing in vivo. In this review we will focus on the temporal features of molecular processes in learning and memory formation, summarize recent knowledge and present an outlook on future developments.  相似文献   

4.
5.
Protein kinases: which one is the memory molecule?   总被引:12,自引:0,他引:12  
Encoding of new experiences is likely to induce activity-dependent modifications in the brain. Studies in organisms far apart on the phylogenetic scale have shown that similar, sometimes identical, signal transduction pathways subserve plasticity in neuronal systems, and they may play pivotal roles in the formation of long-term memories. It has become evident that phosphorylation/dephosphorylation reactions are critical for the initiation of cellular mechanisms that embody, retain and modify information in neural circuits. Although physiological investigations on synaptic plasticity have had a major impact, we have concentrated our review on behavioural studies that provide direct or indirect evidence for a role of kinases in mechanisms underlying memory formation. From these, it appears that the learning event induces activation of a variety of kinases with specific time courses. For instance, the calcium/calmodulin-dependent protein kinase II seems to participate in an early phase of memory formation. Apparently, activation of both protein tyrosine kinases and mitogen-activated protein kinases is required for much longer and may thus have a particular function during transformation from short-term into long-term memory. Quite different time courses appear for protein kinase C (PKC) and protein kinase A (PKA), which may function at two different time points, shortly after training and again much later. This suggests that PKC and PKA might play a role at early and late stages of memory formation. However, we have considered some examples showing that these signalling pathways do not function in isolation but rather interact in an intricate intracellular network. This is indicative of a more complex contribution of each kinase to the fine tuning of encoding and information processing. To decipher this complexity, pharmacological, biochemical and genetic investigations are more than ever necessary to unravel the role of each kinase in the syntax of learning and memory formation.  相似文献   

6.
7.
疼痛的神经生物学--理解大脑机制及神经疾病治疗的机理   总被引:5,自引:0,他引:5  
中枢神经系统的神经元和突触具有可塑性,他们能够发生贯穿整个生命过程的长时程改变。研究这种长时程变化的分子和细胞学机制,不仅可以帮助我们了解大脑如何学习和储存新的知识,而且还可以揭示机体损伤后病理变化的机制。我认为,一方面学习和记忆等生理学功能的神经机制可能与大脑在疼痛期间的反常或机体损伤相关的变化过程共用一些信号分子;另一方面,一些不参与认知学习和记忆过程的突触和神经元网络机制也可能与疼痛的病理过程相关。伤害性感受可以从脊髓传递到前脑并在不同水平受到调节。其中,前扣带脑皮质(anterior cingulate cortex,ACC)在痛觉的感受和调节中具有重要作用。我们的实验结果表明,ACC中的N-甲基-D-门冬氨酸(NMDA)受体依赖的、钙/钙调蛋白激活的腺苷酸环化酶(adenylyl cyclases,AC)(ACl和ACB)在慢性痛的表达过程中起着重要的作用。ACC还可以通过激活内源性易化系统影响脊髓背角的痛觉信号传递。这些结果为机体对损伤的生理反应如痛行为反应、情绪变化和不良记忆等提供了重要的突触和分子水平的机制。加强对疼痛机制研究,会带动中国的神经科学的基础和临床研究。  相似文献   

8.
9.
10.
11.
12.
The structure and function of tRNA genes of higher eukaryotes   总被引:1,自引:0,他引:1  
E Kubli 《Experientia》1981,37(1):1-9
  相似文献   

13.
Memory     
Our understanding of the cellular and molecular mechanisms underlying learning and memory formation derives from studies of species as diverse as worms, mollusks, insects, birds and mammals. Despite the quite different brain structures and neuronal networks, the studies support the current notion that neuronal activity leads to changes in synaptic connections as the neural substrate of behavioral plasticity. The analysis of the mechanisms underlying learning and memory formation reveals a surprisingly high conservation between invertebrates and mammals, both at the behavioral as well as the molecular level. This special issue provides an overview of the current knowledge on cellular and molecular processes underlying memory formation. The contributing reviews summarize the findings in different organisms, such as Aplysia, Drosophila, honeybees and mammals, and discuss new approaches, developments and hypotheses all aimed at understanding how the nervous system acquires, stores and retrieves information.  相似文献   

14.
15.
16.
Heat shock genes are found in all organisms, and synthesis of heat shock proteins is induced by various stressors in nearly all the cells forming these organisms. However, a particular situation is noticed for hsp70 genes in mouse embryos at the beginning of their development. First, spontaneous expression of hsp70 is observed at the onset of zygotic genome activity. Second, inducible expression is delayed until morula or early blastocyst stages. A better understanding of both these points depends on a more careful analysis of hsp70 expression in relation to their major regulators, the heat shock factors. In this review, we will see how the development of the preimplanta tion embryo highlights the complexity of heat shock gene regulation involving trans-cis interactions and the cellular and nuclear environment.  相似文献   

17.
Chronic gestational exposure to ethanol has profound adverse effects on brain development. In this regard, studies using in vitro models of ethanol exposure demonstrated impaired insulin signaling mechanisms associated with increased apoptosis and reduced mitochondrial function in neuronal cells. To determine the relevance of these findings to fetal alcohol syndrome, we examined mechanisms of insulin-stimulated neuronal survival and mitochondrial function using a rat model of chronic gestational exposure to ethanol. In ethanol-exposed pups, the cerebellar hemispheres were hypoplastic and exhibited increased apoptosis. Isolated cerebellar neurons were cultured to selectively evaluate insulin responsiveness. Gestational exposure to ethanol inhibited insulin-stimulated neuronal viability, mitochondrial function, Calcein AM retention (membrane integrity), and GAPDH expression, and increased dihydrorosamine fluorescence (oxidative stress) and pro-apoptosis gene expression (p53, Fas-receptor, and Fas-ligand). In addition, neuronal cultures generated from ethanol-exposed pups had reduced levels of insulin-stimulated Akt, GSK-3β, and BAD phosphorylation, and increased levels of non-phosphorylated (activated) GSK-3β and BAD protein expression. The aggregate results suggest that insulin-stimulated central nervous system neuronal survival mechanisms are significantly impaired by chronic gestational exposure to ethanol, and that the abnormalities in insulin signaling mechanisms persist in the early postnatal period, which is critical for brain development. Received 21 January 2002; received after revision 28 February 2002; accepted 25 March 2002  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号