首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
磁暴产生的地磁感应电流(Geo-magnetically Induced Current,简称GIC)不仅在电网、输油气管道等导体中流动,还在大地中流动,研究大地GIC与大地电导率关系,对认识大地电导率对大地GIC和管网GIC的影响,以及准确计算管网系统的GIC具有重要意义。本文利用均匀大地电导率模型和分层大地电导率模型分别计算了不同深度大地GIC大小以及GIC分布规律,分析了均匀大地电导率模型和分层大地电导率模型与大地深层GIC的关系以及对GIC计算结果的影响。研究结果表明,大地电导率越小,大地GIC分布的深度越深,以及大地电性构造对大地和管网GIC大小和分布深度的影响很大。在此基础上,提出了下一步的研究建议。  相似文献   

2.
准确计算磁暴期间交流电网中的地磁感应电流(geomagnetically induced current,GIC)对评估磁暴对交流电网的影响至关重要。在研究磁暴对交流电网的影响时所应用的现有模型的基础上,以单回交流输电线为研究对象,将交流输电线、接地体和大地进行统一建模;并采用有限元法(FEM)进行求解。这种新模型既可以处理电导率复杂分布的大地模型,又可以将交流输电线及接地体对地表感应地电场分布的影响考虑在内。均匀选取磁暴期间地磁场变化频率0.000 1~0.1 Hz之间的特定频点,分别采用现有模型和新模型计算交流输电线中的GIC,通过对比验证,表明现有模型在频率0.000 1~0.1 Hz之间计算磁暴期间交流电网中GIC时是适用的。  相似文献   

3.
探明磁暴期间地面感应电场的分布情形是正确计算地磁感应电流(GIC)和预测磁暴次生灾害影响的前提。根据电磁场唯一性定理,从求解磁暴感应地电场的角度出发,提出了一种复杂大地电导率结构的建模方法;该方法的特点是只建大地导体区模型,通过模型的边界条件反映地磁场的变化情况及感应地电流在地下的流通情形。采用有限元法求解了典型地电结构下的磁暴感应地电场,通过对比数值方法和解析方法求得的地面电场结果,验证了建模方法的可靠性。进一步采用该方法研究了无法解析求解的复杂地电结构的磁暴感应地电场问题,建模思路和方法为评估磁暴和GIC的管网效应提供了分析工具。  相似文献   

4.
准确计算磁暴期间交流电网中的地磁感应电流(geomagnetically induced current,GIC)对评估磁暴对交流电网的影响至关重要。在研究磁暴对交流电网的影响时所应用的现有模型的基础上,以单回交流输电线为研究对象,将交流输电线、接地体和大地进行统一建模;并采用有限元法(FEM)进行求解。这种新模型既可以处理电导率复杂分布的大地模型,又可以将交流输电线及接地体对地表感应地电场分布的影响考虑在内。均匀选取磁暴期间地磁场变化频率0.000 1~0.1 Hz之间的特定频点,分别采用现有模型和新模型计算交流输电线中的GIC,通过对比验证,表明现有模型在频率0.000 1~0.1 Hz之间计算磁暴期间交流电网中GIC时是适用的。  相似文献   

5.
磁暴是太阳活动引起空间天气异常时导致地面磁场发生剧烈变化的现象,是地磁场对太阳活动的一种剧烈响应。磁暴经常发生,也引起了学者关注。由于磁暴的发生,埋地石油和天然气金属管道中会感应出地磁感应电流(Geomagnetically Induced Currents,GIC)。GIC会干扰阴极保护装置,加速管道腐蚀或造成泄漏,对管道安全产生威胁,管道腐蚀关系到管道能否安全运行,因此探索评估GIC对管道的影响意义重大。由于目前国内对管道GIC研究甚少,总结了GIC的研究现状,旨在为后续研究提供依据。  相似文献   

6.
地磁暴是太阳磁场剧烈变化在地球表面的作用结果,所产生的地电场会造成接地变压器直流偏磁,继而对电力系统安全运行造成不利影响。随着电网规模的增大和电压等级的增高,磁暴已经成为诱发电网灾害性故障风险的威胁之一。研究电力系统磁暴灾害风险能够为预防与控制其引发的电网事故提供重要参考。通过剖析磁暴引发的电力系统故障灾害电性历史事件,讨论了磁暴诱发电力系统风险机理与特点。分别从电网GIC引起的变压器故障和电力系统事故风险两个方面综述了近年来国内外电网磁暴灾害风险研究现状,分析了影响电网磁暴灾害风险的多样性和复杂性以及风险评估的难度;并指出了未来电网磁暴灾害风险的研究方向为风险评估、量化风险影响因素对风险的作用和风险防御等3个方面。  相似文献   

7.
随着中国特高压输电线路的建设,中国电网建设遭受地磁感应电流(geomagnetically induced current, GIC)影响的风险将大大增加。基于大地电阻模型利用有限元计算地磁扰动感应地电场(geomagnetic disturbance, GMD)地电场的方法,建模复杂,利用有限元法计算感应地电场成本过高。地磁测深数据得到的视电阻率综合反映了大地的电性结构,现提出基于视电阻数据及地磁台实测数据直接计算GMD地磁感应地电场的方法。仿真实验表明,该方法可以极大缩短计算时间,减小计算成本,对中国电网应对地磁暴侵害提供了有效算法。计算结果表明地磁暴对各地地电场的影响不均匀,与当地的地质电性结构有很大的关系,同时南北走向的电网将产生更大的GIC,更易受到地磁暴的侵害,应作为主要的关注对象。  相似文献   

8.
为了研究轨道电路地磁感应电流(GIC)监测数据特征及影响因素,对2015年6月23日京港客运专线鹤壁东站轨道电路GIC监测数据进行统计分析。轨道电路GIC监测数据与子午工程观测台站武汉九峰站地磁场数据有较强的相关性,与地磁场北向分量和东向分量显著相关,从统计学角度论证了轨道电路中监测电流主要由地磁暴产生。采用小波去噪法对轨道电路GIC监测数据进行降噪处理,可有效提高与地磁数据的相关性,并与平面波模型和分层大地模型的计算感应地电场进行多元回归分析,得到京港客运专线石武段轨道电路GIC的经验模型。研究结果可用于轨道电路GIC预测及特性分析,有助于理解地磁暴对信号轨道电路系统的影响。同时,轨道电路电磁环境复杂易受干扰,对轨道电路的GIC监测及模型建立提出了新的挑战。  相似文献   

9.
为了研究轨道电路GIC监测数据特征及影响因素,对2015年6月23日京港客运专线鹤壁东站轨道电路GIC监测数据进行统计分析。轨道电路GIC监测数据与子午工程观测台站武汉九峰站地磁场数据有较强的相关性,与地磁场北向分量和东向分量显著相关,从统计学角度论证了轨道电路中监测电流主要由地磁暴产生。本文采用小波去噪法对轨道电路GIC进行降噪处理,可有效提高与地磁数据的相关性,并与平面波模型和分层大地模型的计算感应地电场进行多元回归分析,得到京港客运专线石武段轨道电路GIC的经验模型,研究结果可用于轨道电路GIC预测及特性分析,有助于理解地磁暴对轨道电路信号系统的影响。同时,轨道电路电磁环境复杂易受干扰,对轨道电路的GIC监测及模型建立提出了新的挑战。  相似文献   

10.
通过对第23太阳周几次磁暴期间广东岭澳500 kV电网的地磁感应电流(GIC)实测数据,2010年西北陕、甘、青、宁750 kV电网GIC的计算结果,以及500~1 000 kV电网结构特点和1859年超级磁暴强度的分析,阐述了极端空间天气对我国未来特高压、大规模电网安全的可能影响,提出了应对极端空间天气的研究建议。 [  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号