首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charcot-Marie-Tooth (CMT) disease serves as the summary term for the most frequent forms of inherited peripheral neuropathies that affect motor and sensory nerves. In the last 12 years, 14 genes have been identified that cause different CMT subforms. The genes found initially are predominantly responsible for demyelinating and dysmyelinating neuropathies. Genes affected in axonal and rare forms of CMT have only recently been identified. In this review, we will focus on the currently known genes that are associated with CMT syndromes with regards to their genetics and function.Received 5 April 2003; received after revision 20 May 2003; accepted 23 May 2003  相似文献   

2.
Comparative genome analyses reveal that most functional domains of human genes have homologs in widely divergent species. These shared functional domains, however, are differentially shuffled among evolutionary lineages to produce an increasing number of domain architectures. Combined with duplication and adaptive evolution, domain shuffling is responsible for the great phenotypic complexity of higher eukaryotes. Although the domain-shuffling hypothesis is generally accepted, determining the molecular mechanisms that lead to domain shuffling and novel gene creation has been challenging, as sequence features accompanying the formation of known genes have been obscured by accumulated mutations. The growing availability of genome sequences and EST databases allows us to study the characteristics of newly emerged genes. Here we review recent genome-wide DNA and EST analyses, and discuss the three major molecular mechanisms of gene formation: (1) atypical spicing, both within and between genes, followed by adaptation, (2) tandem and interspersed segmental duplications, and (3) retrotransposition events. Received 18 October 2006; received after revision 18 November 2006; accepted 28 November 2006  相似文献   

3.
Activating and inactivating mutations of SHP-2 are responsible, respectively, for the Noonan (NS) and the LEOPARD (LS) syndromes. Clinically, these developmental disorders overlap greatly, resulting in the apparent paradox of similar diseases caused by mutations that oppositely influence SHP-2 phosphatase activity. While the mechanisms remain unclear, recent functional analysis of SHP-2, along with the identification of other genes involved in NS and in other related syndromes (neurofibromatosis-1, Costello and cardio-facio-cutaneous syndromes), strongly suggest that Ras/MAPK represents the major signaling pathway deregulated by SHP-2 mutants. We discuss the idea that, with the exception of LS mutations that have been shown to exert a dominant negative effect, all disease-causing mutations involved in Ras/MAPK-mediated signaling, including SHP-2, might lead to enhanced MAPK activation. This suggests that a narrow range of MAPK signaling is required for appropriate development. We also discuss the possibility that LS mutations may not simply exhibit dominant negative activity. Received 30 November 2006; received after revision 8 February 2007; accepted 13 March 2007  相似文献   

4.
The search for migraine genes: an overview of current knowledge   总被引:3,自引:0,他引:3  
Migraine is a complex familial condition that imparts a significant burden on society. There is evidence for a role of genetic factors in migraine, and elucidating the genetic basis of this disabling condition remains the focus of much research. In this review we discuss results of genetic studies to date, from the discovery of the role of neural ion channel gene mutations in familial hemiplegic migraine (FHM) to linkage analyses and candidate gene studies in the more common forms of migraine. The success of FHM regarding discovery of genetic defects associated with the disorder remains elusive in common migraine, and causative genes have not yet been identified. Thus we suggest additional approaches for analysing the genetic basis of this disorder. The continuing search for migraine genes may aid in a greater understanding of the mechanisms that underlie the disorder and potentially lead to significant diagnostic and therapeutic applications. Received 16 December 2005; received after revision 9 October 2006; accepted 13 November 2006  相似文献   

5.
6.
H Bluethmann 《Experientia》1991,47(9):884-890
Transgenic mice carrying functionally rearranged T cell receptor genes have contributed significantly to our knowledge of T cell development and thymic positive and negative selection processes. In addition, TCR-transgenic mice have been used to investigate mutations affecting thymocyte development, like scid and lpr. Gene targeting by homologous recombination will allow to analyze more specifically the molecular mechanisms underlying thymic selection and peripheral tolerance.  相似文献   

7.
Primary antibody deficiencies (PAD) form the largest group of inherited disorders of the immune system. They are characterized by a marked reduction or absence of serum immunoglobulins (Ig) due to disturbed B cell differentiation and by a poor response to vaccination. PAD can be divided into agammaglobulinemia, Ig class switch recombination deficiencies, and idiopathic hypogammaglobulinemia. Over the past 20 years, defects have been identified in 18 different genes, but in many PAD patients the underlying gene defects have not been found. Diagnosis of known PAD and discovery of new PAD is important for good patient care. In this review, we present the effects of genetic defects in the context of normal B cell differentiation, and we discuss how new technical developments can support understanding and discovering new genetic defects in PAD.  相似文献   

8.
Transgenic mice carrying functionally rearranged T cell receptor genes have contributed significantly to our knowledge of T cell development and thymic positive and negative selection processes. In addition, TCR-transgenic mice have been used to investigate mutations affecting thymocyte development, likescid andlpr. Gene targeting by homologous recombination will allow to analyze more specifically the molecular mechanisms underlying thymic selection and peripheral tolerance.  相似文献   

9.
10.
Paget’s disease of bone is a chronic focal skeletal disorder characterized by increased bone resorption by the osteoclasts. Paramyxoviral gene products have been detected in pagetic osteoclasts. Paget’s disease is an autosomal dominant trait with genetic heterogeneity. Several mutations in the ubiquitin-associated (UBA) domain of sequestosome 1 (SQSTM1/p62) have been identified in patients with Paget’s disease. Similarly, mutations in the valosin-containing protein (VCP) gene have been shown to cause inclusion body myopathy associated with Paget’s disease of bone and frontotemporal dementia. In addition, gene polymorphisms and enhanced levels of cytokine/growth factors associated with Paget’s disease have been identified. However, the etiologic factors in Paget’s disease remain elusive. A cause and effect relationship for the paramyxoviral infection and SQSTM1/ p62 gene mutations responsible for pagetic osteoclast development and disease severity are unclear. This article will highlight the etiologic factors involved in the pathogenesis of Paget’s disease. Received 6 October 2005; received after revision 2 November 2005; accepted 24 November 2005  相似文献   

11.
Polycystin-1, polycystin-2 and polycystin-L are the predicted protein products of the PKD1, PKD2 and PKDL genes, respectively. Mutations in PKD1 and PKD2 are responsible for almost all cases of autosomal dominant polycystic kidney disease (ADPKD). This condition is one of the commonest mendelian disorders of man with a prevalence of 1:800 and is responsible for nearly 10% of cases of end-stage renal failure in adults. The cloning of PKD1 and PKD2 in recent years has provided the initial steps in defining the mechanisms underlying renal cyst formation in this condition, with the aim of defining pharmacological and genetic interventions that may ameliorate the diverse and often serious clinical manifestations of this disease. The PKD genes share regions of sequence similarity, and all predict integral membrane proteins. Whilst the predicted protein domain structure of polycystin-1 suggests it is involved in cell-cell or cell-matrix interactions, the similarity of polycystin-2 and polycystin-L to the pore-forming domains of some cation channels suggests that they all form subunits of a large plasma membrane ion channel. In the few years since the cloning of the PKD genes, a consensus that defines the range of mutations, expression pattern, interactions and functional domains of these genes and their protein products is emerging. This review will therefore attempt to summarise these data and provide an insight in to the key areas in which polycystin research is unravelling the mechanisms involved in renal cyst formation. Received 22 February 1999; received after revision 5 July 1999; accepted 6 July 1999  相似文献   

12.
Hearing molecules: contributions from genetic deafness   总被引:1,自引:0,他引:1  
Considerable progress has been made over the past decade identifying many genes associated with deafness. With the identification of these hereditary deafness genes and the proteins they encode, molecular elements of basic hearing mechanisms emerge. As functional studies of these molecular elements become available, we can put together the pieces of the puzzle and begin to reach an understanding of the molecular mechanisms of hearing. The goal of this review is to discuss studies over the past decade that address the function of the proteins implicated in genetic deafness and to place them in the context of basic molecular mechanisms in hearing. The first part of this review highlights structural and functional features of the cochlea and auditory nerve. This background will provide a context for the second part, which addresses the molecular mechanisms underlying cochlear function as elucidated by genetic causes of deafness. Received 20 September 2006; received after revision 24 October 2006; accepted 5 December 2006  相似文献   

13.
Mitochondrial control of caspase-dependent and -independent cell death   总被引:1,自引:0,他引:1  
Mitochondria control whether a cell lives or dies. The role mitochondria play in deciding the fate of a cell was first identified in the mid-1990s, because mitochondria-enriched fractions were found to be necessary for activation of death proteases, the caspases, in a cell-free model of apoptotic cell death. Mitochondrial involvement in apoptosis was subsequently shown to be regulated by Bcl-2, a protein that was known to contribute to cancer in specific circumstances. The important role of mitochondria in promoting caspase activation has therefore been a major focus of apoptosis research; however, it is also clear that mitochondria contribute to cell death by caspase-independent mechanisms. In this review, we will highlight recent findings and discuss the mechanism underlying the mitochondrial control of apoptosis and caspase-independent cell death.  相似文献   

14.
Many types of experiments have been recognized in the literature. One important type we discuss in this article is the orientation experiment. While orientation experiments are like other types of experiments in that they are tests for causal relevance, they also have other qualities. One important (but not the only) goal of these experiments is to offer a rough, qualitative characterization of the mechanism responsible for a capacity of interest, effectively constraining future research. This makes them particularly useful during the early stages of investigation, when an explanandum-phenomenon has just been identified and several (often competing) hypotheses as to the qualitative character of the mechanism responsible for it are proposed. We illustrate our claims, and explicate a number of additional aims that orientation experiments can sometimes serve, by considering three case studies from different era's, namely the discovery of the mechanisms responsible for i) the capacity of eels to produce numbing sensations (17th and 18th century), ii) puerperal fever in Semmelweis' Vienna Maternity Hospital (19th century), and iii) the capacity of pigeons to home (20th century).  相似文献   

15.
16.
Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis, the most common life-limiting recessive genetic disease among Caucasians. CFTR mutations have also been linked to increased risk of various cancers but remained controversial for a long time. Recent studies have begun to reveal that CFTR is not merely an ion channel but also an important regulator of cancer development and progression with multiple signaling pathways identified. In this review, we will first present clinical findings showing the correlation of genetic mutations or aberrant expression of CFTR with cancer incidence in multiple cancers. We will then focus on the roles of CFTR in fundamental cellular processes including transformation, survival, proliferation, migration, invasion and epithelial–mesenchymal transition in cancer cells, highlighting the signaling pathways involved. Finally, the association of CFTR expression levels with patient prognosis, and the potential of CFTR as a cancer prognosis indicator in human malignancies will be discussed.  相似文献   

17.
Several mutations that decrease the basal signaling activity of G-protein coupled receptors (GPCRs) with pathogenic implications are known. Here we study the molecular mechanisms responsible for this phenotype and investigate how basal and further activated receptor conformations are interrelated. In the basally active thyroid stimulating hormone receptor (TSHR) we combined spatially-distant mutations with opposing effects on basal activity in double-mutations and characterized mutant basal and TSH induced signaling. Mutations lowering basal activity always have a suppressive influence on TSH induced signaling and on constitutively activating mutations (CAMs). Our results suggest that the conformation of a basally ‘silenced’ GPCR might impair its intrinsic capacity for signaling compared to the wild-type. Striking differences in conformation and intramolecular interactions between TSHR models built using the crystal structures of inactive rhodopsin and partially active opsin help illuminate the molecular details underlying mutations decreasing basal activity. G. Kleinau, H. Jaeschke: These two authors contributed equally to this work. Received 31 July 2008; received after revision 12 September 2008; accepted 19 September 2008  相似文献   

18.
Comparison of the growing number of disorders known to be associated with triplet repeat expansions reveals both common features and a diversity of molecular pathways. Despite significant progress towards the characterization of proteins coded by the mutant genes, the complex nature of these disorders requires identification of all molecular components of the triplet repeat pathways. In this brief review we will discuss recent progress in determining the molecular mechanisms of disorders with unstable trinucleotide mutations. Received 13 January 1999; received after revision 8 March 1999; accepted 9 March 1999  相似文献   

19.
Establishment of vertebrate left–right asymmetry is a critical process for normal embryonic development. After the discovery of genes expressed asymmetrically along the left–right axis in chick embryos in the mid 1990s, the molecular mechanisms responsible for left–right patterning in vertebrate embryos have been studied extensively. In this review article, we discuss the mechanisms by which the initial symmetry along the left–right axis is broken in the mouse embryo. We focus on the role of primary cilia and molecular mechanisms of ciliogenesis at the node when symmetry is broken and left–right asymmetry is established. The node is considered a signaling center for early mouse embryonic development, and the results we review here have led to a better understanding of how the node functions and establishes left–right asymmetry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号