首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Treatment of 3T3 cell plasma membranes with glycosidase enzymes decreased their ability to inhibit cell growth and also decreased their binding to 3T3 cells. This suggests that carbohydrate is required for complete function of inhibitory activity and that inhibition is associated with membrane adhesion.  相似文献   

2.
The effect of C1-C8 n-alcohols on 3T3 cell growth is studied using flow cytofluorometry. Methanol and ethanol markedly lengthen either the duration of G1, or that of G2+ M when present in relatively higher doses. The effect of longer chains is always to increase G2+M significantly. This may be due to deviations depending on alcoholic chain length in membrane lipid fluidity.  相似文献   

3.
The NLRP3 inflammasome is a critical innate immune pathway responsible for producing active interleukin (IL)-1β, which is associated with tumor development and immunity. However, the mechanisms regulating the inflammatory microenvironment, tumorigenesis and tumor immunity are unclear. Herein, we show that the NLRP3 inflammasome was over-expressed in human HNSCC tissues and that the IL-1β concentration was increased in the peripheral blood of HNSCC patients. Additionally, elevated NLRP3 inflammasome levels were detected in tumor tissues of Tgfbr1/Pten 2cKO HNSCC mice, and elevated IL-1β levels were detected in the peripheral blood serum, spleen, draining lymph nodes and tumor tissues. Blocking NLRP3 inflammasome activation using MCC950 remarkably reduced IL-1β production in an HNSCC mouse model and reduced the numbers of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) and tumor-associated macrophages (TAMs). Moreover, inhibiting NLRP3 inflammasome activation increased the numbers of CD4+ and CD8+ T cells in HNSCC mice. Notably, the numbers of exhausted PD-1+ and Tim3+ T cells were significantly reduced. A human HNSCC tissue microarray showed that NLRP3 inflammasome expression was correlated with the expression of CD8 and CD4, the Treg marker Foxp3, the MDSC markers CD11b and CD33, and the TAM markers CD68 and CD163, PD-1 and Tim3. Overall, our results demonstrate that the NLRP3 inflammasome/IL-1β pathway promotes tumorigenesis in HNSCC and inactivation of this pathway delays tumor growth, accompanied by decreased immunosuppressive cell accumulation and an increased number of effector T cells. Thus, inhibition of the tumor microenvironment through the NLRP3 inflammasome/IL-1β pathway may provide a novel approach for HNSCC therapy.  相似文献   

4.
A decrease in the levels of the desmosomal plaque protein, plakophilin3 (PKP3), leads to a decrease in desmosome size and cell-cell adhesion. To test the hypothesis that PKP3 is required for desmosome formation, the recruitment of desmosomal components to the cell surface was studied in the PKP3 knockdown clones. The PKP3 knockdown clones showed decreased cell border staining for multiple desmosomal proteins, when compared to vector controls, and did not form desmosomes in a calcium switch assay. Further analysis demonstrated that PKP3, plakoglobin (PG) and E-cadherin are present at the cell border at low concentrations of calcium. Loss of either PG or E-cadherin led to a decrease in the levels of PKP3 and other desmosomal proteins at the cell border. The results reported here are consistent with the model that PG and E-cadherin recruit PKP3 to the cell border to initiate desmosome formation.  相似文献   

5.
目的 观察氧化型低密度脂蛋白(oxidized low density lipoprotein,ox-LDL)诱导3T3-L1脂肪细胞内质网应激相关标志物p-eIF2a、CHOP的表达,探讨ox-LDL对3T3-L1脂肪细胞内质网应激的诱导作用.方法 体外培养3T3-L1脂肪细胞,用ox-LDL分别干预脂肪细胞6小时、12小时、24小时,用RT-PCR检测CHOP mRNA表达,用Western blot检测p-eIF2a、CHOP蛋白表达.结果 ox-LDL可诱导脂肪细胞p-eIF2a、CHOP表达,p-eIF2a表达发生在ox-LDL作用早期(6小时,12小时),24小时表达有所下降,而CHOP的表达强度随时间增加,24小时表达达到高峰.结论 ox-LDL可诱导3T3-L1脂肪细胞发生内质网应激,激活未折叠蛋白反应信号通路.p-eIF2a表达发生在ox-LDL作用早期,而CHOP的表达强度呈时间依赖性.  相似文献   

6.
Adaptive immunity critically contributes to control acute infection with enteropathogenic Yersinia pseudotuberculosis; however, the role of CD4+ T cell subsets in establishing infection and allowing pathogen persistence remains elusive. Here, we assessed the modulatory capacity of Y. pseudotuberculosis on CD4+ T cell differentiation. Using in vivo assays, we report that infection with Y. pseudotuberculosis resulted in enhanced priming of IL-17-producing T cells (Th17 cells), whereas induction of Foxp3+ regulatory T cells (Tregs) was severely disrupted in gut-draining mesenteric lymph nodes (mLNs), in line with altered frequencies of tolerogenic and proinflammatory dendritic cell (DC) subsets within mLNs. Additionally, by using a DC-free in vitro system, we could demonstrate that Y. pseudotuberculosis can directly modulate T cell receptor (TCR) downstream signaling within naïve CD4+ T cells and Tregs via injection of effector molecules through the type III secretion system, thereby affecting their functional properties. Importantly, modulation of naïve CD4+ T cells by Y. pseudotuberculosis resulted in an enhanced Th17 differentiation and decreased induction of Foxp3+ Tregs in vitro. These findings shed light to the adjustment of the Th17-Treg axis in response to acute Y. pseudotuberculosis infection and highlight the direct modulation of CD4+ T cell subsets by altering their TCR downstream signaling.  相似文献   

7.
8.
Death receptor 3 (DR3) was initially identified as a T cell co-stimulatory and pro-inflammatory molecule, but further studies revealed a more complex role of DR3 and its ligand TL1A. Although being a death receptor, DR3 gained to date predominantly attention as a contributor to inflammation-driven diseases. In our study, we investigated the cell death pathways associated with DR3. We show that in addition to apoptosis, DR3 can robustly trigger necroptotic cell death and provide evidence for TL1A-induced, DR3-mediated necrosome assembly. DR3-mediated necroptosis critically depends on receptor-interacting protein 1 (RIP1) and RIP3, the core components of the necroptotic machinery, which activate the pseudo-kinase mixed lineage kinase domain-like, the prototypic downstream effector molecule of necroptosis. Moreover, we demonstrate that DR3-mediated necroptotic cell death is accompanied by, but does not depend on generation of reactive oxygen species. In sum, we identify DR3 as a novel necroptosis-inducing death receptor and thereby lay ground for elucidating the (patho-) physiological relevance of DR3-mediated necroptotic cell death in vitro and in vivo.  相似文献   

9.
To better understand T lymphocyte costimulation by inducible costimulator (ICOS; H4; CD278), we analyzed proteins binding to ICOS peptides phosphorylated at the Y191MFM motif. Phosphorylated ICOS binds class IA phosphatidyl inositol 3-kinase (PI3-K) p85α, p50-55α and p85β regulatory subunits and p110α, p110δ and p110β catalytic subunits. Intriguingly, T cells expressed high levels of both p110α or p110δ catalytic subunits, yet ICOS peptides, cell surface ICOS or PI3-kinase class IA regulatory subunits preferentially coprecipitated p110α catalytic subunits. Silencing p110α or p110δ partially inhibited Akt/PKB activation induced by anti-CD3 plus anti-ICOS antibodies. However, silencing p110α enhanced and silencing p110δ inhibited Erk activation. Both p110α- and p110δ-specific inhibitors blocked cytokine secretion induced by TCR/CD3 activation with or without ICOS costimulus, but only p110α inhibitors blocked ICOS-induced cell elongation. Thus, p110α and p110δ are essential to optimal T cell activation, but their abundance and activity differentially tune up distinct ICOS signaling pathways.  相似文献   

10.
Hexose transport in Swiss 3T3 cells was increased by treatment with dichloroacetic acid as well as by treatment with insulin. Neither extra- nor intracellular Ca2+ was found to be involved in their stimulatory action. On the other hand, the removal of intracellular Mg2+ resulted in a loss of the stimulation. These results suggest that dichloroacetic acid stimulates the hexose transport in Mg2+-dependent manner, similar to that of insulin.  相似文献   

11.
Immunological memory allows for rapid and effective protective immunity to previously encountered pathogens. New insights in understanding specific memory differentiation and function have now indicated that in addition to providing enhanced immunity, an important purpose of immunological memory is to provide immediate protection at all sites of the body, including non-lymphoid tissues. Effector memory CD8 T cells have the capacity to reside long-term at epithelial surfaces, where they allow for rapid containment of the invading pathogens at the local entry site and prevent systemic spreading and excessive immune responses. The accumulation of tissue-specific memory T cell subsets, together with cross-reactivity of these antigen-experienced T cells even to unrelated pathogens, provides flexibility and expansion of their specificity repertoire that over time greatly surpasses that of the declining na?ve T cell populations. This review will discuss new insights into T cell memory. We will focus in particular on the generation and function of effector memory CD8 T cells at the intestinal mucosa, which represents one of the largest entry sites for pathogens.  相似文献   

12.
Forkhead transcription factors in immunology   总被引:5,自引:0,他引:5  
  相似文献   

13.
The injection of thyrotropin releasing hormone into cattle resulted in a rapid decrease in the T4/T3 molar ratio. 2 breeds of cattle, Shorthorn and Africander Cross were studied. The decrease in the T4/T3 molar ratio was significantly greater in the Shorthorn breed. It is concluded that acute stimulation of the thyroid gland with TRH results in enhanced release of both T3 and T4 and that T3 is discharged more rapidly than T4.  相似文献   

14.
Regulation of cell division requires the integration of signals implicated in chromatin reorganization and coordination of its sequential changes in mitosis. Vaccinia-related kinase 1 (VRK1) and Aurora B (AURKB) are two nuclear kinases involved in different steps of cell division. We have studied whether there is any functional connection between these two nuclear kinases, which phosphorylate histone H3 in Thr3 and Ser10, respectively. VRK1 and AURKB are able to form a stable protein complex, which represents only a minor subpopulation of each kinase within the cell and is detected following nocodazole release. Each kinase is able to inhibit the kinase activity of the other kinase, as well as inhibit their specific phosphorylation of histone H3. In locations where the two kinases interact, there is a different pattern of histone modifications, indicating that there is a local difference in chromatin during mitosis because of the local complexes formed by these kinases and their asymmetric intracellular distribution. Depletion of VRK1 downregulates the gene expression of BIRC5 (survivin) that recognizes H3-T3ph, both are dependent on the activity of VRK1, and is recovered with kinase active murine VRK1, but not with a kinase-dead protein. The H3–Thr3ph–survivin complex is required for AURB recruitment, and their loss prevents the localization of ACA and AURKB in centromeres. The cross inhibition of the kinases at the end of mitosis might facilitate the formation of daughter cells. A sequential role for VRK1, AURKB, and haspin in the progression of mitosis is proposed.  相似文献   

15.
16.
Summary Hexose transport in Swiss 3T3 cells was increased by treatment with dichloroacetic acid as well as by treatment with insulin. Neither extra-nor intracellular Ca2+ was found to be involved in their stimulatory action. On the other hand, the removal of intracellular Mg2+ resulted in a loss of the stimulation. These results suggest that dichloroacetic acid stimulates the hexose transport in Mg2+-dependent manner, similar to that of insulin.This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, and the Ministry of Health and Welfare of Japan.  相似文献   

17.
Currently, chemical bifunctional cross-linkers are regarded as promising therapeutic agents capable of affecting cell metabolism. Depending on the nature of the active groups and on the length of their mediating spacer, these cross-linkers have been shown to influence mitochondrial functions, the cell cycle and cell death. The current study was aimed to assay cellular effects of a cross-linker with ‘zero’-length spacer, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). When added to cultures of transformed cells, EDC induced a G2/M blockade followed by cell death. Analysis of the molecular targets revealed that alteration of the cell cycle was caused by EDC-induced interchain cross-linking within double-stranded DNA. Administration of EDC to animals with experimental tumors increased their life span. The analysis of tumor cells from EDC-treated mice showed up-regulation of p21/WAF1, disturbance of tumor cell cytokinesis and, hence, cell death. Thus, both in vitro and in vivo, EDC exhibits cytotoxic activity, which may be of potential therapeutic use. Received 15 August 2005; received after revision 23 September 2005; accepted 15 November 2005  相似文献   

18.
Electrophysiological experiments demonstrate that triiodothyronine (T3) exerts a direct effect on the membrane of a strain of cultured rat pituitary tumor cells, GH3/B6. These cells respond to pressure application of T3 (2-5 nl, concentration 1 X 10(-10) M) with an increase in the membrane resistance (Rm) and a hyperpolarization. Spontaneously firing cells become silent.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号