首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
群分次环的Clifford直接定理的推广   总被引:2,自引:1,他引:2  
推广了单模情形的分次环的直接Clifford定理,得到了对有限生成半单分次模情形下的直接Clifford定理。  相似文献   

2.
给出GCN环的定义,研究GCN环的一些性质.主要证明了如下结果:GCN环是直接有限环;GCN环是左极小Abel环;设R为GCN环,若x∈R是exchange元,则x是clean元;R是约化环当且仅当R是半素的GCN环.  相似文献   

3.
WGC2环     
证明了如下结果:①R是左WGC2环当且仅当每个左正则元是右可逆元;②R是左WGC2环当且仅当对每个左R-模M,每个a∈W(R),总有M=aM;③设R是左WGC2环,则Zl(R)■J(R);④R是co-Hopfian环当且仅当R是左WGC2环和直接有限环;⑤设R是左WGC2环和quasi-normal环,则R是co-Hopfian环;⑥R是除环当且仅当R是无零因子环和左WGC2环.  相似文献   

4.
关于半素有限余生成环杨士林,王顶国(北京计算机学院数学教研室100044,北京市;曲阜师范大学数学系273165,山东省曲阜市)本文所有的环均指结合环,模指右模,若R有单位元,其模均指么模,R-弱单模的概念及有关结果文献[2]已有陈述,R-模M的弱基...  相似文献   

5.
本文证明了具有n(n≥2)个左(右)零因子的环R,当/R/〈n^2,必有/R/≤n^2/2。  相似文献   

6.
本文中,我们证明了如下主要结果:(1)如果R是半素环,R又是右Morphic的,且L是R中的极大左零化子,则L是R的极大左理想,且存在e^2=e∈R使L=Re。(2)如果R是素环又是右Morphie的,且有极大左零化子,则R是左、右本原环(3)如果R是半素的右Morphic环,则R有唯一的最大理想I,I不含非零幂零元且I=lr(I)=rl(I),Z(RI)=Z(IR)=0。  相似文献   

7.
本文证明了:若S是R的一个有限正规扩张,则(1)_RF是平坦的,当且仅当S(?)_RF是一个平坦的左S-模;(2)有限生成模P_R是投射的,当且仅当P(?)_RS是一个投射的右S-模。 若S是R的一个右自由有限正规扩张,则P_R是投射的,当且仅当P(?)_RS是一个投射的右S-模。 并应用这些结果于“从R的一个有限正规扩张S具有某种性质去断定R也具有该种性质”。得到了一些新的结果。  相似文献   

8.
对固定的正整数k,本文给出:满足n(n-k)<|R|<n(n-k+l),且恰有n(n≥2)个左(右)零因子环R存在的必要条件,并且对k=1,2,3,4给出了结果.  相似文献   

9.
本文证明了具有n(n≥2)个左(右)零因子的环R,当|R|<n2时,必有|R|≤n22  相似文献   

10.
右弱C2环     
给出右弱C2环的定义,证明了:1)环R是右弱C2环当且仅当对每个0≠a∈R,存在正整数n使得a^n≠0,且若r(a^n)=r(e),其中e^2=e∈R,则e∈Ra^n;2)R是右弱C2环,则Zr(R)包含于J(R);3)给出右弱C2环上Dedekind有限环的等价刻画;4)R是强正则环当且仅当R是右pp环,右弱C2环,Abel环和右零因子幂环。  相似文献   

11.
右n-C2环     
给了右n-C2环的概念.证明了如下结果:(1)环R是n-C2环当且仅当n∈Z+,对于a∈R,若r(an)=r(e),其中e2=e∈R,则e∈Ran;(2)若R是右n-C2环,则Zr(R)J(R);(3)若R是一个环,则下列条件等价:(i)R是n-正则环;(ii)R是右n-C2环和右n-Gpp环.  相似文献   

12.
NSF环     
左NSF环是左SF环的推广,研究左NSF环的一些性质,得到如下主要结果:①左NSF的ZI环是约化环,从而为强正则环;②R为n-正则环当且仅当R为左NSF环和右NPP环;③设R是左NSF环,h∈E(R),则hRh是左NSF环.  相似文献   

13.
定义了矩阵环的零化子,对有限生成模的自同态环进行了刻画.证明了有限生成左R-模的自同态环是环R上矩阵环的一个子环的同态像,并利用此结果给出了代数学中一些经典结论的新的证明.  相似文献   

14.
证明了如下结果:①环R是强左DS环当且仅当R是左DS环和强左极小Abel环;②设R为强左DS环,e2=e∈R为弱角幂等元,则eRe也是强左DS环;③R是强左极小Abel环当且仅当对每个e∈MEl(R),任意的a,b∈R,eab=eaeb;④强左极小Abel环的次直积也是强左极小Abel环;⑤R是强左DS环当且仅当对R的每个左极小元k,存在e∈MEl(R),使得Rk=l(1-e),l(k)=R(1-e);⑥R是左极小Abel环当且仅当对R的每个左极小元k,当k2=0时,对每个a∈R,总有Rk+R(ka-1)=R.  相似文献   

15.
NIFP环     
给出NIFP环的定义,研究NIFP环的一些性质.主要证明了如下结果:①NIFP环是直接有限环;②NIFP环是左极小Abel环;③设R为NIFP环,若x∈R是exchange元,则x是clean元;④设R为NIFP环,x∈R,n∈Z+,若xn是clean元,则x也是clean元;⑤NIFP的左WGC2环是左GC2环.  相似文献   

16.
左极小Abel环   总被引:2,自引:2,他引:0  
证明了如下结果:①设R为左极小Abel环,e^2=e∈R满足ReR=R,则角环eRe也是左极小Abel环;②设I是R的不含幂等元的理想,且R/I是左极小Abel环,则R为左极小Abel环;③ R为左极小Abel环←→投射单左R-模的零化子是极大左理想.  相似文献   

17.
半布尔群环     
证明了如果R是一个环,G是一个局部有限群,则群环RG是半布尔环当且仅当R是半布尔环,且G是一个2-群。  相似文献   

18.
半布尔群环     
证明了如果只是一个环,G是一个局部有限群,则群环RG是半布尔环当且仅当R是半布尔环,且G是一个2-群。  相似文献   

19.
证明了如下结果:1)环R是左quas i-duo环当且仅当对任意x J(R),y∈R,Ry R(yx-1)=R;2)环R是左quas i-duo环当且仅当R是左极小A be l环和左M ELT环.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号