首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
以模拟含氮废水为处理对象,利用间歇曝气序批式生物反应器比较进水有机负荷和曝气速率对短程硝化反硝化强化脱氮的影响.实验结果发现,进水有机负荷由0.35 g/(L·d)增加到1.00 g/(L·d)时,在同一个曝气速率0.6 L/min条件下,COD_(Cr)的去除率由97.67%减小到95.80%,TN的去除率由92.07%减少到85.64%;短程硝化反硝化效率η从38.96%升高到84.59%.在3个阶段中,COD_(Cr)的去除率均随着曝气速率的增加而增加;总氮TN的去除率变化与曝气速率的增加没有明显的关系;η随着曝气速率的增加而减少.η值越高,而TN的去除率越低.  相似文献   

2.
利用自培养硝化污泥与实验室筛选的1株反硝化细茵共培养形成共生污泥,构建膜生物反应器(MBR)单一反应体系同步硝化反硝化系统,得到系统良好同步硝化反硝化曝气量和污泥浓度的最优条件.由试验结果可知:在混合污泥质量浓度(MLSS)6.0~10.0g/L时,调节曝气量,可以使单污泥同步硝化反硝化总氮(TN)去除率达到85%以上.不同MLSS下,达到最高TN去除率的最佳曝气量随着MLSS增高而向高曝气量偏移.随着MLSS增高,响应因子F变小,由曝气量的变化而引起的TN去除率变化明显变缓,表示MLSS对O2传递的缓冲能力越强.在MLSS为8g/L条件下,低负荷比较容易达到较高的TN去除率,而高负荷下需要更高的曝气量以获得高的TN去除率,系统适合的NH4+-N负荷范围0~0.30 kg/(m3·d).MLSS≥3.0g/L,出水化学需氧量(COD)低于50 mg/L,COD大部分贡献于反硝化所需C源.单一反应体系同步硝化反硝化系统能对负荷的改变作出及时的回应,整体上运行比较稳定.  相似文献   

3.
DO对膜生物反应器中同步硝化反硝化的影响   总被引:1,自引:0,他引:1  
采用人工配制的生活污水作为原水,考察了在膜生物反应器(MBR)中不同溶解氧(DO)对于同步硝化反硝化效果的影响.结果表明,将试验条件控制在TN容积负荷为0.35 kgN/(m3*d)、HRT为6 h、SRT为30 d、pH为7~8、温度为25~28 ℃、C/N为9时:在反应器DO的质量浓度为0.6 mg/L条件下,可获得62.5%的NH+4 -N去除率、91.1%的反硝化率和58.3%的SND率;在反应器DO的质量浓度为1.0 mg/L条件下,可获得90.8%的NH+4-N去除率、90.4%的反硝化率和82.5%的SND率;在反应器DO的质量浓度为1.4 mg/L时,可获得93.3%的NH+4-N去除率、77.0%的反硝化率和72.1%的SND率.  相似文献   

4.
丝绸厂汰头废水脱氮试验研究   总被引:1,自引:1,他引:0  
针对丝绸厂汰头废水高有机物浓度高氮的特点,对SBBR反应器高效脱氮技术进行了系统研究,考察了负荷、DO、温度及碳源投加对反应器脱氮效能的影响,获得了控制反应器高效同步硝化反硝化脱氮的关键工况参数.试验结果表明:SBBR反应器在挂膜密度为35%、DO为6.5mg/L、有机负荷为0.3kgBOD5/m3·d,氮负荷为0.6kgN/m3·d条件下,表现出显著的同时硝化反硝化能力,可使出水NH4 -N浓度降为1.09mg/L,TN降为16.76mg/L,去除率分别为98%和 88.5%.  相似文献   

5.
短程硝化反应器的快速启动与运行特性   总被引:5,自引:0,他引:5  
为了探讨快速启动和运行特性,以硝化污泥接种序批式反应器,在纯自养条件下利用短程硝化处理高NH4 -N废水。实验结果表明,控制溶解氧(d isso led oxygen,DO)浓度为0.5 m g/L、游离氨浓度11.8~49.1 m g/L时,反应器的启动在第13 d完成。在曝气量为800 mL/m in时,利用pH与DO的变化趋势来判断氨氧化进程,控制每周期曝气时间为6.0 h,反应器稳定运行了101个周期。NH4 -N平均去除率为82.6%,NH4 -N去除负荷最大为0.97 kg/(m3.d),NO2--N平均累积率达97.2%,NO3--N浓度小于10 m g/L。在反应器中利用纯自养微生物可以长期稳定地实现短程硝化反应。  相似文献   

6.
利用可生物降解聚合物去除饮用水源水中硝酸盐   总被引:19,自引:0,他引:19  
采用一种非水溶性可生物降解多聚物(BDP s)材料PBS颗粒作为生物异养反硝化的固体碳源和生物膜载体去除饮用水源水中的硝酸盐。结果表明:在15 d内,PBS颗粒表面能够形成反硝化生物膜,生物膜生物对pH值、进水溶解氧(DO)冲击负荷的适应能力很强;当溶液pH值介于4.5~9.5时,反硝化速率为0.48~0.7 m g.(g.d)-1。进水DO介于1.4~8.5m g.L-1时,反硝化速率0.63~0.68m g.(g.d)-1;温度对反硝化影响较大,30℃时的反硝化速率为0.72m g.(g.d-)1,远大于13℃下的0.23m g.(g.d-)1。  相似文献   

7.
上流式曝气生物滤池脱氮性能研究   总被引:12,自引:0,他引:12  
文章对单级上流式曝气生物滤池的脱氮性能进行了初步研究。研究结果表明,在进水有机负荷为4~12kgCOD/(m3·d)、水力负荷1~4m3/(m2·h)及气水比1∶1~5∶1的工艺条件下,COD和NH3-N的去除率达到70%~86%和53%~79%。在水力负荷较低时,控制气水比可以实现同步硝化反硝化。  相似文献   

8.
以由实际生活污水配制的低C/N比生活污水为研究对象,在集成式反应器主反应区实现了同步硝化反硝化(SND)脱氮.考察了集成式反应器对低C/N比污水的脱氮效能.结果表明:DO=1.4~1.7mg/L,总HRT=18h(主反应区HRT=7.2h),C/N=5时,NH+4-N可从15±2mg/L平均降至2.5mg/L,总氮可以从20±2mg/L平均降至3.4mg/L,TN处理负荷可达0.13kg TN/(m3·d),较同类低C/N比污水脱氮系统高;相同条件下连续运行时,出水NH+4-N和TN浓度稳定在0.8~3.0mg/L和1.4~4.7mg/L,去除率在80.2%~94.9%和76.5%~93.2%.以Monod方程为基础通过物料衡算求解出SND动力学方程并求得硝化过程氨氮饱和常数KNH4-N+=1.34mg/L,氨氮降解反应级数n=0.622 4,反硝化过程硝酸盐氮饱和常数KNO3-N-=0.71mg/L.分析表明:该SND系统内生物量充足、活性高,生物降解效率受底物浓度限制小,集成式反应器结构合理,可实现小水量低C/N比生活污水深度脱氮,为我国中小城镇生活污水深度处理提供技术支持和理论依据.  相似文献   

9.
膜生物反应器净化污水的硝化反硝化性能   总被引:2,自引:0,他引:2  
比较了膜生物反应器(MBR)和传统活性污泥工艺(CAS)在相同运行条件下处理生活污水的硝化和反硝化性能.结果表明,MBR对NH4 -N和TN的去除率分别比CAS高54.8%和37.3%.2种工艺的亚硝化、反硝化作用均呈零级反应,对应降解速率常数MBR分别约为CAS的2.2倍和2.5倍;CAS中硝化作用为零级反应,而MBR中硝化作用随时间推移趋于平缓.MBR中的细菌总数、硝酸菌、亚硝酸菌和反硝化菌数量分别比CAS工艺中相应菌种高1~2个数量级.通过控制曝气强度或减小回流通道断面限制缺氧区溶解氧质量浓度,可提高MBR中的反硝化效果.  相似文献   

10.
在常温、低氨氮浓度下,通过控制DOC质量浓度在0.5~1.2 mg/L,在SBR反应器中成功实现短程硝化与同时硝化反硝化工艺的耦合;亚硝酸累积率达到78.5%,总氮损失率达到28.1%;研究了有机负荷和pH对耦合工艺的影响,结果表明,有机物负荷增加有利于提高耦合工艺总氮的去除率,负荷从0.11上升到0.47时,TN的去除率从18.0%上升至41.9%;本实验条件下耦合工艺最佳pH在7.6左右.  相似文献   

11.
采用考虑最小基质浓度的Michaelis-Menten方程,建立了原水生物硝化氨氮去除速率动力学模型.根据反应器物料平衡原理,建立了多级完全混合式原水生物预处理硝化反应器动态模拟模型,模型计算值与实际中试运行效果较为一致.利用建立的动态模拟模型,考察了水量、进水氨氮浓度、填料比表面积、池体填料填充率、反应器级数及各级池体体积分配对整体工艺运行效果的影响,其中填料比表面积和填充率的变化为影响处理效果的最重要因素.该模型较好地反应了工艺硝化的过程,可方便应用于工艺的设计、控制和管理.  相似文献   

12.
倒置A2/O系统中碳、氮、磷的物料平衡分析   总被引:1,自引:0,他引:1  
通过对以倒置A2/O工艺运行的某城市污水处理厂各生物处理单元及二沉池中碳,氮、磷等指标的分析,建立了物料平衡公式,研究了该工艺碳、氮,磷等物料的流向,并在物料平衡的基础上对各单元的脱氮除磷效率进行分析,结果表明:在好氧池中存在同时硝化反硝化现象;减少好氧池的曝气量,既能提高脱氮除磷效率,又能节约能源.  相似文献   

13.
好氧颗粒污泥可通过特殊的厌/好氧空间结构实现短程硝化,而短程硝化和好氧颗粒结构都可能导致温室气体N2O释放.试验研究了处理养殖废水过程中好氧颗粒污泥短程硝化性能,及利用微电极探针定量分析N2O过程释放特性.稳定运行期间,COD与氨氮平均去除率分别为76.8%和94.4%,短程硝化效率可达88.9%.根据微电极探针和气相色谱分析结果,好氧颗粒污泥系统厌氧和好氧阶段N2O生成量分别占46.4%和53.6%,但短程硝化系统的N2O释放主要来源于曝气吹脱作用;系统内N2O中氮的释放量占进水氮的比例为2.1%,好氧颗粒污泥并未显著强化N2O释放.  相似文献   

14.
为了解决A2O工艺生物脱氮除磷不稳定、出水氮磷难以达标的问题,在A2O工艺好氧段添加悬浮式生物填料以保证高质量浓度的硝化细菌及高硝化率.考察不同COD与总氮质量浓度比x、旁流比对工艺脱氮和除磷的影响.此外,在COD与总氮质量浓度比较低条件下对装置进行了改装,即在厌氧段前添加了一段预缺氧段,使其达到深度脱氮除磷的效果.试验结果表明:当进水x=3.6~8.1,COD,TN和TP去除率根据硝化液回流比的不同而不同,x和硝化液回流比越高,出水硝态氮越低;当x为8.1,硝化液回流比为300%时,脱氮除磷效果最好,其出水硝态氮质量浓度仅为4.23 mg/L.当COD与总氮质量浓度比较低时,TP的去除率较低,当x>4.5时,磷的去除率几乎为100%.A2O系统中生物膜硝化作用占总硝化作用的81.6%,而活性污泥硝化作用只占18.4%.这说明生物膜具有良好的硝化作用.  相似文献   

15.
采用活性炭涂层改性悬浮填料,在连续曝气的条件下,考察了SBBR 反应器脱氮性能。结果表明,SBBR反应器表现出良好的同步硝化反硝化(SND)脱氮性能,对NH3-N 和TN 的去除率分别为80.7%和63.1%。典型周期内反应器同步硝化反硝化率可达82.7%。单因素试验发现,脱氮率随着曝气时间狋的增加而增加,随着溶解氧质量浓度ρDO和填料投加量δ增大而先增大后减小。同时,以溶解氧质量浓度、填料投加量和曝气时间为考察因素,脱氮率为评价指标,采用响应曲面法建立了二次多元回归模型。通过模型求解得出最佳工况:溶解氧浓度为2.37 mg/L,填料投加量为40.10%,曝气时间为5.17 h,此时,脱氮率得到最大值为69.28%。验证试验表明,回归模型的预测值与实测值偏差率为1.57%。  相似文献   

16.
A combined system consisting of hydrolysisacidification, denitrification and nitrification reactors wasused to remove carbon and nitrogen from the nylon - 6production wastewater, which was characterized by goodbiodegradability and high nitrogen concentration. Theinfluences of Chemical Oxygen Demand(COD) in theinfluent, recirculation ratio, Hydraulic Residence Time(HRT) and Dissolved Oxygen(DO) concentration on thesystem performances were investigated. From results itcould be seen that good performances have been achievedduring the overall experiments periods, and COD, TotalNitrogen(TN), NH -N and Suspended Solids(SS) in theeffluent were 53, 16, 2 and 24 mg·L-1, respectively,which has satisfied the first standard of wastewaterdischarge established by Environmental Protection Agency(EPA) of China. Furthermore, results showed thatoperation factors, viz. COD in the influent, recirculationratio, HRT and DO concentration, all had importantinfluences on the system performances.  相似文献   

17.
采用上流式厌氧氨氧化(anaerobic ammonium oxidation, ANAMMOX)反应器,通过氮去除效能的变化,研究无机碳(inorganic carbon, IC)在厌氧氨氧化过程中的作用及IC质量浓度对厌氧氨氧化过程的影响.结果表明:当进水不投加IC时,反应器脱氮效能明显下降,当进水IC和总无机氮(total inorganic nitrogen,TIN)的质量浓度之比ρICTIN为0.2~0.4时,脱氮效能得到恢复并逐步提高.ρ○IC○TIN从0.4继续提高至1.0时,脱氮效能不再发生明显变化.在ρ○IC○TIN为0.4的条件下启动新反应器,运行61天后氮去除负荷达到1.04kg·m-3·d-1,ANAMMOX菌活性明显高于原反应器.表明厌氧氨氧化过程中,IC主要提供碳源并充当反应催化剂,充足的IC供应是提高ANAMMOX活性和维持稳定脱氮的必要条件,厌氧氨氧化启动过程中进水IC和TIN最佳质量浓度之比为0.4.  相似文献   

18.
郭姣  高健磊  李枫  杨博 《河南科学》2010,28(10):1331-1333
研究了进水方式与比例对UCT工艺处理城市污水同时脱氮除磷效果的影响.结果表明,外回流100%,内回流200%时,多点进水的同时脱氮除磷效果明显优于单点进水;两点进水中,当进水配比为7:3时能达到更高的除磷效果,TP去除率可达83%,比进水配比为5:5时提高10%;进水配比为5:5时的脱氮效果略占优势,TN去除率为77%,比进水配比为7:3时高4%;三点进水时,当进水配比为4:4:2条件下,TN和TP的去除率分别达到78%和88%,同时脱氮除磷效果得到加强.试验还发现,可根据监测到的回流至厌氧段的硝态氮的浓度,来判定碳源分配的合理性.  相似文献   

19.
多孔载体存在下生物脱氮技术   总被引:4,自引:0,他引:4  
为有效去除污水中的含氮物质 ,在体积为 3.5 L 的鼓泡曝气塔内使用模拟污水 ,研究了同时硝化和反硝化过程。实验过程中 ,在鼓泡曝气塔中投入占总体积 10 %的多孔聚氨酯载体 ,以实现微生物的固定化。实验表明 ,投加载体后 ,实验体系中含氮物质的去除效率明显提高 ;在 16~ 6 4L /h气体体积流量范围内可以在 3h内得到接近于 10 0 %的NH+ 4- N去除率 ;证明了采用补充碳源的方法可以有效提高NH+ 4- N去除率。  相似文献   

20.
The study presented the method for isolating the heterotrophic nitrifiers and the characterization of heterotrophic nitrification. When influent Ammonia nitrogen concentration was 42. 78-73. 62 mg/L. The average ammonia nitrogen removal rate was 81,32% from the bio-ceramics reactor. Sodium acetate and ammonium chloride were used as carbon and nitrogen source. The COD removal rates by microorganisms of strain wgy21 and wgy36 were 56.1% and 45.45%, respectively. The TN removal rates by microorganisms of strain wgy21 and wgy36 were 65.85%and 67. 98%, respectively. At the same time, the concentration of ammonium nitrogen was with the removal rates of 75.25% and 84.96%, and it also had the function of producing NO2-N. Sodium acetate and sodium nitrite were used as carbon and nitrogen source. Through the 12days of the aerobic culture, the COD femoral rates by microorganisms of strain wgy21 and wgy36 were 29.25%and 22.08%, respectively. NO2-N concentration decreased slowly. Comparison, similarity of wgy21 and many Acinetobacter sp. ≥99%, similarity of wgy36 and many Acinetobacter sp. ≥99%. Refer to routine physiological-biochemical characteristic determination, further evidences showed that wgy21 and wgy36 belong to Acinetobacter sp.,respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号