首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A brain-specific microRNA regulates dendritic spine development   总被引:6,自引:0,他引:6  
MicroRNAs are small, non-coding RNAs that control the translation of target messenger RNAs, thereby regulating critical aspects of plant and animal development. In the mammalian nervous system, the spatiotemporal control of mRNA translation has an important role in synaptic development and plasticity. Although a number of microRNAs have been isolated from the mammalian brain, neither the specific microRNAs that regulate synapse function nor their target mRNAs have been identified. Here we show that a brain-specific microRNA, miR-134, is localized to the synapto-dendritic compartment of rat hippocampal neurons and negatively regulates the size of dendritic spines--postsynaptic sites of excitatory synaptic transmission. This effect is mediated by miR-134 inhibition of the translation of an mRNA encoding a protein kinase, Limk1, that controls spine development. Exposure of neurons to extracellular stimuli such as brain-derived neurotrophic factor relieves miR-134 inhibition of Limk1 translation and in this way may contribute to synaptic development, maturation and/or plasticity.  相似文献   

2.
Gene regulation: ancient microRNA target sequences in plants   总被引:2,自引:0,他引:2  
Floyd SK  Bowman JL 《Nature》2004,428(6982):485-486
MicroRNAs are an abundant class of small RNAs that are thought to regulate the expression of protein-coding genes in plants and animals. Here we show that the target sequence of two microRNAs, known to regulate genes in the class-III homeodomain-leucine zipper (HD-Zip) gene family of the flowering plant Arabidopsis, is conserved in homologous sequences from all lineages of land plants, including bryophytes, lycopods, ferns and seed plants. We also find that the messenger RNAs from these genes are cleaved within the same microRNA-binding site in representatives of each land-plant group, as they are in Arabidopsis. Our results indicate not only that microRNAs mediate gene regulation in non-flowering as well as flowering plants, but also that the regulation of this class of plant genes dates back more than 400 million years.  相似文献   

3.
Gong C  Maquat LE 《Nature》2011,470(7333):284-288
Staufen 1 (STAU1)-mediated messenger RNA decay (SMD) involves the degradation of translationally active mRNAs whose 3'-untranslated regions (3' UTRs) bind to STAU1, a protein that binds to double-stranded RNA. Earlier studies defined the STAU1-binding site within ADP-ribosylation factor 1 (ARF1) mRNA as a 19-base-pair stem with a 100-nucleotide apex. However, we were unable to identify comparable structures in the 3' UTRs of other targets of SMD. Here we show that STAU1-binding sites can be formed by imperfect base-pairing between an Alu element in the 3' UTR of an SMD target and another Alu element in a cytoplasmic, polyadenylated long non-coding RNA (lncRNA). An individual lncRNA can downregulate a subset of SMD targets, and distinct lncRNAs can downregulate the same SMD target. These are previously unappreciated functions of non-coding RNAs and Alu elements. Not all mRNAs that contain an Alu element in the 3' UTR are targeted for SMD even in the presence of a complementary lncRNA that targets other mRNAs for SMD. Most known trans-acting RNA effectors consist of fewer than 200 nucleotides, and these include small nucleolar RNAs and microRNAs. Our finding that the binding of STAU1 to mRNAs can be transactivated by lncRNAs uncovers an unexpected strategy that cells use to recruit proteins to mRNAs and mediate the decay of these mRNAs. We name these lncRNAs half-STAU1-binding site RNAs (1/2-sbsRNAs).  相似文献   

4.
Widespread changes in protein synthesis induced by microRNAs   总被引:3,自引:0,他引:3  
Animal microRNAs (miRNAs) regulate gene expression by inhibiting translation and/or by inducing degradation of target messenger RNAs. It is unknown how much translational control is exerted by miRNAs on a genome-wide scale. We used a new proteomic approach to measure changes in synthesis of several thousand proteins in response to miRNA transfection or endogenous miRNA knockdown. In parallel, we quantified mRNA levels using microarrays. Here we show that a single miRNA can repress the production of hundreds of proteins, but that this repression is typically relatively mild. A number of known features of the miRNA-binding site such as the seed sequence also govern repression of human protein synthesis, and we report additional target sequence characteristics. We demonstrate that, in addition to downregulating mRNA levels, miRNAs also directly repress translation of hundreds of genes. Finally, our data suggest that a miRNA can, by direct or indirect effects, tune protein synthesis from thousands of genes.  相似文献   

5.
The functions of animal microRNAs   总被引:23,自引:0,他引:23  
Ambros V 《Nature》2004,431(7006):350-355
MicroRNAs (miRNAs) are small RNAs that regulate the expression of complementary messenger RNAs. Hundreds of miRNA genes have been found in diverse animals, and many of these are phylogenetically conserved. With miRNA roles identified in developmental timing, cell death, cell proliferation, haematopoiesis and patterning of the nervous system, evidence is mounting that animal miRNAs are more numerous, and their regulatory impact more pervasive, than was previously suspected.  相似文献   

6.
7.
8.
9.
10.
11.
12.
近年来, 越来越多的证据表明, 大量的非编码RNA(non-coding RNAs, ncRNAs)在基因的表达调控、细胞和机体的生理功能维持与病理环境调节方面都有重要作用, 其中主要包括微小RNA(microRNAs, miRNAs) 和长链非编码RNA(long non-coding RNAs, lncRNAs).心脏重构与再生是心血管疾病领域的关键问题, 其调控过程非常复杂, 包括表观遗传、转录、转录后及翻译水平的调控. 大量研究发现在转录后水平, miRNAs 通过负性调节靶标的表达调控心脏发育、疾病及再生进程. 近期研究揭示, lncRNAs 在心脏发育和疾病中具有潜在的作用, 可通过表观遗传、转录及转录后水平发挥作用. lncRNAs 已成为继miRNAs 之后的又一重要的调节性非编码RNA. 就非编码RNA 在心脏重构及再生进程中的调控作用进行综述.  相似文献   

13.
非编码RNA(non-coding RNAs, ncRNAs) 是一类不编码蛋白质的RNA 分子. 相关研究表明, ncRNAs 不仅参与细胞的增殖、凋亡、分化、代谢等生理过程, 还参与疾病的病理过程. 心肌重构(myocardial remodeling)是多种心血管疾病最主要的病理基础. 已有多项研究表明, 心肌重构的发生发展与ncRNAs 的调控息息相关, 近年来针对ncRNAs 在心脏疾病方面的研究也得到了迅猛发展. 对ncRNAs 包括微小RNA(microRNAs, miRNAs)、长链非编码RNA(long non-coding RNAs, lncRNAs)和环形RNA(circular RNAs, circRNAs) 与心肌重构的最新研究进展以及作用机制进行介绍, 旨在寻找新的心脏疾病治疗靶点.  相似文献   

14.
Serganov A  Polonskaia A  Phan AT  Breaker RR  Patel DJ 《Nature》2006,441(7097):1167-1171
Riboswitches are metabolite-sensing RNAs, typically located in the non-coding portions of messenger RNAs, that control the synthesis of metabolite-related proteins. Here we describe a 2.05 angstroms crystal structure of a riboswitch domain from the Escherichia coli thiM mRNA that responds to the coenzyme thiamine pyrophosphate (TPP). TPP is an active form of vitamin B1, an essential participant in many protein-catalysed reactions. Organisms from all three domains of life, including bacteria, plants and fungi, use TPP-sensing riboswitches to control genes responsible for importing or synthesizing thiamine and its phosphorylated derivatives, making this riboswitch class the most widely distributed member of the metabolite-sensing RNA regulatory system. The structure reveals a complex folded RNA in which one subdomain forms an intercalation pocket for the 4-amino-5-hydroxymethyl-2-methylpyrimidine moiety of TPP, whereas another subdomain forms a wider pocket that uses bivalent metal ions and water molecules to make bridging contacts to the pyrophosphate moiety of the ligand. The two pockets are positioned to function as a molecular measuring device that recognizes TPP in an extended conformation. The central thiazole moiety is not recognized by the RNA, which explains why the antimicrobial compound pyrithiamine pyrophosphate targets this riboswitch and downregulates the expression of thiamine metabolic genes. Both the natural ligand and its drug-like analogue stabilize secondary and tertiary structure elements that are harnessed by the riboswitch to modulate the synthesis of the proteins coded by the mRNA. In addition, this structure provides insight into how folded RNAs can form precision binding pockets that rival those formed by protein genetic factors.  相似文献   

15.
16.
MicroRNA silencing through RISC recruitment of eIF6   总被引:1,自引:0,他引:1  
  相似文献   

17.
18.
Global quantification of mammalian gene expression control   总被引:3,自引:0,他引:3  
  相似文献   

19.
All metazoan eukaryotes express microRNAs (miRNAs), roughly 22-nucleotide regulatory RNAs that can repress the expression of messenger RNAs bearing complementary sequences. Several DNA viruses also express miRNAs in infected cells, suggesting a role in viral replication and pathogenesis. Although specific viral miRNAs have been shown to autoregulate viral mRNAs or downregulate cellular mRNAs, the function of most viral miRNAs remains unknown. Here we report that the miR-K12-11 miRNA encoded by Kaposi's-sarcoma-associated herpes virus (KSHV) shows significant homology to cellular miR-155, including the entire miRNA 'seed' region. Using a range of assays, we show that expression of physiological levels of miR-K12-11 or miR-155 results in the downregulation of an extensive set of common mRNA targets, including genes with known roles in cell growth regulation. Our findings indicate that viral miR-K12-11 functions as an orthologue of cellular miR-155 and probably evolved to exploit a pre-existing gene regulatory pathway in B cells. Moreover, the known aetiological role of miR-155 in B-cell transformation suggests that miR-K12-11 may contribute to the induction of KSHV-positive B-cell tumours in infected patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号