首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
利用光纤抗电磁干扰、绝缘性好, 体积小等特性,提出一种新型的光纤电流传感器. 该传感器将悬臂梁结构和光纤Fabry-Perot相结合,基于材料力学理论和电磁感应原理,利用Fabry-Perot干涉仪原理来实现对电流的测量. 在解调方式上采用了相位解调法,分析了该传感器的工作原理及光纤F-P的测量原理,建立了光纤F-P腔的数学模型,推导出电流检测理论公式,并进行了相关实验,证明该电流传感器具有绝缘性好、结构简单、灵敏度高等优点.  相似文献   

2.
程进  王娜 《北京理工大学学报》2018,38(12):1276-1281,1288
利用低精细度法-珀干涉原理,建立了光纤法-珀腔声传感器的温度数学模型,包括干涉光谱随温度变化的关系和声传感器输出信号随温度变化的关系.利用建立的温度数学模型,并通过仿真分析和实验验证,分析了影响光纤法-珀腔声传感器温度特性的关键-材料的热膨胀系数差异.提出复合光纤插芯结构,获得较大的热膨胀系数,以补偿腔长的变化,从而使光纤法-珀腔声传感器具有良好温度适应性.对采用复合光纤插芯的光纤法-珀腔声传感器进行了测试,测试结果表明,在-20~+40℃温度范围内,该传感器具有良好的温度适应性.   相似文献   

3.
光纤传感器自70年代末问世以来,由于其具有体积小、灵敏度高、响应速度快、成本低、不受电磁干扰、可在狭窄空间下使用等多方面的优点而受到广泛重视,已开发出许多种类的光纤传感器.本文将光纤网络和Y型光纤传感器结合,组成光纤安全报警系统,与传统的报警系统相比,它具有体积小、结构简单、灵敏度高,可靠性好以及不受电磁干扰等方面的优点.1 光纤报警装置的结构和原理  相似文献   

4.
讨论了双折射对光纤电流传感器稳定性影响,并介绍了一种采用光学偏振控制器、块状玻璃传感头和单光路检测的光纤电流传感器。理论分析和实验结果表明,这种结构的光纤电流传感器能够有效地消除输入、输出光纤及传感头的双折射对系统测量灵敏度的影响,使系统工作稳定可靠。  相似文献   

5.
研究了一种利用电光晶体的一次电光效应测量脉冲电压和电场的方法,给出了光纤电压电场传感器的基本结构和测量原理,计算和对比了BGO和LN等几种不同晶体对测量灵敏度的影响.利用HP-8011A型脉冲信号发生器做为信号源,进行了初步的设计和测试,实验结果表明LN晶体具有较高的灵敏度、线性度以及较好的频率响应.  相似文献   

6.
高频CO2激光脉冲写入的长周期光纤光栅(LPFG)对温度比较敏感、应变不敏感,通常应用在温度传感器做温度测量.普通长周期光纤光栅温度灵敏度只有0.052 nm·℃-1,而用掺硼光纤制作的长周期光纤光栅温度灵敏度达到0.171 nm·℃-1,比普通长周期光纤光栅更加灵敏.因而应用在温度传感提高了传感器的灵敏度以及测温精度...  相似文献   

7.
基于一次谐波的光谱吸收式甲烷气体传感器设计   总被引:1,自引:0,他引:1  
甲烷气体检测是工业生产、环境监测和科学研究领域中的一个重要研究课题.该文在基于波长调制技术的光谱吸收式光纤气体检测方法的基础上,分析了一次谐波信号的数学模型,提出了一种基于一次谐波设计的光纤甲烷气体传感器的实施方案,设计精确的电流和温度电路控制垂直腔面发射激光器,利用锁相放大器AD630提取一次谐波信号幅度,实现对不同浓度的甲烷气体进行测量.实验结果表明,一次谐波信号幅度与浓度存在着很好的线性关系,分辨率达到20ppm.该系统消除了光源波动的影响,工作稳定,简化了结构,调试简便.  相似文献   

8.
常规电力变压器储油柜油位采用电信号传感器进行监测,传感器信号易受变压器高电压、大电流等复杂电磁环境的干扰,针对上述不足,研究了一种基于光纤光栅传感器的变压器储油柜油位计,即光纤光栅油位计.该光纤光栅油位计主要由光纤光栅传感器和C型弹簧管组成,利用光纤光栅对应变的传感特性、液体压强与液位高度的关系实现储油柜油位的监测,是一种能有效提高变压器稳定运行的非电量监测方法.结果表明:光纤光栅油位计中心波长偏移量与储油柜油位变化呈良好的线性关系,线性拟合度均值为0.9996,灵敏度均值为4.7472 pm/dm,能够满足变压器储油柜油位的监测要求.  相似文献   

9.
本文报道基于光纤耦合衰荡系统的光纤压力传感器.从衰荡信号基线的稳定性、光纤传输损耗和光纤折射率三个方面探讨了传感器的基本特征.根据传感器探头压力相应行为给出传感器总体表现.传感器的压力相应范围在0-9.8×106Pa之间.另外,探讨了传感器的线性响应、测量的可重复性、探测灵敏度和动态测量范围.  相似文献   

10.
针对目前用于绝对低频振动测量的传感器在测量超低频(1 Hz以下)的绝对振动时,其输出信号完全被“淹没”的缺点,提出了一种基于光纤的超低频绝对振动速度传感器技术方案.从传感器的力学模型出发,导出了传感器谐振结构的动态模型,对传输光纤出射光光强分布的线性度进行了分析,得出了输出信号与振动输入信号的关系.实验结果表明,此传感器与惯性磁电式速度传感器相比,在低频段具有更高的灵敏度.  相似文献   

11.
分析了有源环形谐振腔组成的光纤激光陀螺的精度与谐振腔特征参数的关系,采用单向泵浦光纤复合谐振腔结构的光学系统设计方案.在此结构上,对影响光纤激光陀螺理论精度的结构参数进行计算机数值仿真,详细讨论了系统参数的变化趋势对光纤激光陀螺理论精度的影响.初步仿真结果表明:选取合适掺铒光纤长度及泵浦功率可以有效提高理论精度,提高输入信号光强及选择合适的输出耦合器的耦合比,可进一步提高陀螺的理论精度.  相似文献   

12.
谐振式光纤陀螺由于其在小型化、集成化和高精度等方面比干涉型光纤陀螺占有优势,引起了国内外研究机构的广泛关注,而光纤环形谐振腔作为光纤陀螺的核心敏感部件对陀螺信号的输出至关重要。本文分析对比了半长1.10 m,定长2.2 m,保偏耦合器偏振消光比为20 dB,分光比为50∶50的光纤环腔在相同室温条件下,不同匝数谐振谱线的谐振深度ρ、半高全宽(FWHM)以及光纤陀螺的输出信号包括动态范围、频率带宽、标度因数、系统极限灵敏度的各项陀螺关键指标,为定长保偏光纤环腔作为光学陀螺的核心部件提供相关指导。  相似文献   

13.
为研制高灵敏度且环长度更短的光纤角速度传感器 (FORS) ,对采用低相干长度光源、无源环形谐振腔以及高性能反射镜的新型再入式光纤角速度传感器 (RPR- FORS)进行了理论分析与实验研究。分析了无源环形谐振腔中定向耦合器的透过率、环形谐振腔的透过率与测量灵敏度的关系。通过采用机械方式改变反射系数的方法验证了反射镜在RPR- FORS中的作用 ;进行了相位调制器插入环形谐振腔内与插入环形谐振腔和反射镜之间的对比实验 ,证明了两种调制方式具有相同的效果。同时在初步实验中获得了角速度敏感信号。这种 RPR- FORS为集成化的角速度传感器奠定了理论和实验基础  相似文献   

14.
本文提出一种基于掺铒光纤激光器的有源内腔吸收型全光纤气体检测技术.以掺铒光纤激光器二能级速率方程为基础,理论上分析了腔镜反射率、阈值附近激光增益的非线性效应和模式竞争对气体检测灵敏度的影响.分析表明:改变腔反射镜的反射率可改变激光的反射次数,相当于改变了吸收长度以提高探测灵敏度;阈值附近激光增益的非线性效应对灵敏度的改变具有非线性性,如果不考虑自发辐射,阈值附近探测灵敏度放大倍数理论上可以达到无穷大;模式竞争效应相当于放大了气体的吸收系数,从而使得激光器多模运转时灵敏度比单模运转提高很多倍.  相似文献   

15.
有源环形腔滤波器   总被引:4,自引:0,他引:4  
利用掺铒光纤放大补偿环形腔中的损耗,制作了有源带通型环形腔.初步实验表明,用它对窄带的光源进行滤波,可以获得线宽更窄的光谱.  相似文献   

16.
采用标准单模光纤和光纤耦合器构造了单环形振荡滤波器和Mach-zehnder环形振荡滤波器,推导并分析了两种光纤环形振荡滤波器的滤波特性,单环形振荡滤波器腔内振荡模式线宽和精细度,Machzehnder环形振荡滤波器中模式分裂现象,以及腔内损耗对它们的影响.  相似文献   

17.
天津大学在973计划项目的资助下,开展了光纤传感技术相关研究.其主要内容包括设计了基于光子晶体光纤的填充银线的PCF-SPR传感器,最佳灵敏度为2 400 nm/RIU;设计了一种基于液芯光子晶体光纤的PBG-PCF温度传感器,传感器的最高分辨率为4×103 nm/RIU;设计了基于甲苯-氯仿混合溶液填充的光子晶体光纤可调谐热敏光开关,通过改变溶液配比实现不同温度跃变点;构建了基于光微流体理论的3种结构模型,并针对模式场分布及磁场探测展开了研究;构建了基于L波断掺饵光纤放大器的光纤内腔气体传感系统,其绝对误差小于0.04%;针对传感器结构、解调光路、解调算法,设计并优化了F-P传感系统;提出了针对光纤传感网的评估鲁棒性模型,开展了梳状暗调谐光源技术和OFDR技术在光纤传感网检测方面的研究.  相似文献   

18.
基于光纤干涉仪的加速度传感器   总被引:1,自引:1,他引:0  
用于振动检测的光纤干涉仪加速度传感器具有大动态范围和高灵敏度等优点,非常适合要求高响应检测的场合。本文主要介绍了光纤干涉仪加速度传感原理和设计结构,并对常用的两种结构进行了性能比较。  相似文献   

19.
报道用Ar~ 激光泵浦抛磨型掺Nd~(3 )光纤定向耦合器构成的环形腔、环形激光器的激光阀值、双端输出功率、光谱、偏振等光学特性,并讨论其对激光陀螺应用的可能性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号