首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
B lymphocytes originate from pluripotential haematopoietic stem cells and differentiate into immunoglobulin (Ig)-producing cells. B-cell lineage differentiation is accompanied by two types of immunoglobulin gene rearrangements--rearrangement of V, D and J gene segments to create a functional V gene and rearrangement of CH genes for heavy-chain switching. These results, however, have been obtained mainly by analysis of immunoglobulin gene organization of myeloma cells. Baltimore and his colleagues have established Abelson murine leukaemia virus (A-MuLV)-transformed cell lines and found a few lines capable of carrying out kappa-gene rearrangement or undergoing isotype switching during in vitro culture. To study early B-cell lineage differentiation events, we have now also established A-MuLV-transformed cell lines which are capable of differentiating from mu- to mu+ and of undergoing continuing rearrangement of heavy-chain genes in culture. Analysis of immunoglobulin gene organization of these transformed cells revealed that mu- cells have already undergone DNA rearrangements involving JH segments but an additional rearrangement of JH segments is required for initiation of mu-chain synthesis. Southern blot analysis of the DNA and two-dimensional gel electrophoresis of intracytoplasmic mu-chain show that mu-chain diversity with respect to antigen specificity may be generated during this second rearrangement process. As no rearrangement of light-chain genes takes place in these cells, this implies that light-chain gene rearrangement requires some further change, or a different enzyme.  相似文献   

3.
The creation of a functional antibody gene requires the precise recombination of gene segments initially separated on the chromosome. Frequently errors occur in the process, resulting in the formation of a non-functional gene. The non-functional genes can be generated by incomplete rearrangements, frameshifts, or the use of pseudo V or J joining segments. It is likely that these aberrant rearrangements arise by the same mechanism as is used in generating functional genes, a process which we have suggested may involve unequal sister chromatid exchange. Aberrant rearrangements of immunoglobulin genes occur in normal lymphocytes and play a major part in allelic exclusion. However, it has recently been suggested that aberrant rearrangements involving immunoglobulin and non-immunoglobulin genes may be involved in tumorigenesis. This suggestion has been stimulated by the frequent occurrence of translocations involving chromosomes known to carry immunoglobulin genes in B-cell malignancies. The rearrangement of non-immunoglobulin DNA to the heavy-chain locus has recently been reported. Some aberrant rearrangements of the kappa locus appear to be due to rearrangements to sites that do not include the conventional sequence for V gene segment joining. Here we describe an aberrant kappa rearrangement that has led to the joining of DNA from chromosomes 15, 6 and 12, and so appears to be the result of chromosomal translocations or transpositions. As 15/6 or 15/12 translocations have frequently been found in mouse plasmacytomas (as have analogous translocations in human lymphocyte tumours) this aberrant kappa rearrangement may be unique to the plasmacytoma from which it was isolated.  相似文献   

4.
Sale JE  Calandrini DM  Takata M  Takeda S  Neuberger MS 《Nature》2001,412(6850):921-926
After gene rearrangement, immunoglobulin V genes are further diversified by either somatic hypermutation or gene conversion. Hypermutation (in man and mouse) occurs by the fixation of individual, non-templated nucleotide substitutions. Gene conversion (in chicken) is templated by a set of upstream V pseudogenes. Here we show that if the RAD51 paralogues XRCC2, XRCC3 or RAD51B are ablated the pattern of diversification of the immunoglobulin V gene in the chicken DT40 B-cell lymphoma line exhibits a marked shift from one of gene conversion to one of somatic hypermutation. Non-templated, single-nucleotide substitutions are incorporated at high frequency specifically into the V domain, largely at G/C and with a marked hotspot preference. These mutant DT40 cell lines provide a tractable model for the genetic dissection of immunoglobulin hypermutation and the results support the idea that gene conversion and somatic hypermutation constitute distinct pathways for processing a common lesion in the immunoglobulin V gene. The marked induction of somatic hypermutation that is achieved by ablating the RAD51 paralogues is probably a consequence of modifying the recombination-mediated repair of such initiating lesions.  相似文献   

5.
Regulated progression of a cultured pre-B-cell line to the B-cell stage   总被引:3,自引:0,他引:3  
M G Reth  P Ammirati  S Jackson  F W Alt 《Nature》1985,317(6035):353-355
The variable (V) regions of heavy and light immunoglobulin chains are encoded by multiple germline DNA elements which are assembled into complete variable-region genes in precursor(pre-) B lymphocytes. The heavy-chain V region (VH) is assembled from three separate germline DNA elements, the variable (VH), diversity (D) and joining (JH) segments; whereas light-chain variable regions of either the kappa or lambda type are assembled from two elements, the VL and JL. Analysis of tumour cell lines or sorted cell populations which represent early and late pre-B cells has suggested that heavy-chain assembly and expression generally precedes that of light chains; but, primarily because of the lack of appropriate model systems to study the phenomenon, the mechanism and significance of this apparently orderly differentiation process are much debated. Here we describe for the first time a transformed cell line, 300-19, which sequentially undergoes all of the immunoglobulin gene rearrangement and expression events associated with the differentiation of pre-B cells to surface immunoglobulin-positive B lymphocytes. Analysis of the in vitro differentiation of 300-19 cells provides direct evidence for distinct differentiation phases of first VH and subsequently VL assembly during B-cell differentiation. Furthermore, these analyses suggest that the mu heavy chain, resulting from a productive VHDJH rearrangement, has both a positive and a negative regulatory role in mediating this ordered differentiation process, that is, signalling the cessation of VH gene assembly and simultaneously signalling the onset of VL assembly.  相似文献   

6.
The transgenic mouse line M54 was generated by introducing a functionally-rearranged immunoglobulin mu heavy-chain gene into the germ line of a C57B1/6 inbred mouse. Previous examination of the antibodies produced by B-cell hybridomas derived from transgenic M54 mice showed that the presence of the mu transgene grossly altered the immunoglobulin repertoire of unimmunized animals, suggesting that these mice suffer from a serious immunoregulatory perturbation. Studies presented here introduce a new perspective on this functional defect. We show that the lymphoid tissues from these transgenic mice lack virtually all conventional bone-marrow-derived B cells, which constitute the predominant B-cell population in normal mice and which typically produce primary and secondary antibody responses to T-cell-dependent antigens. Moreover, the bone marrow from transgenic M54 mice is depleted of pre-B lymphocytes, indicating a serious defect in early B-cell lymphopoiesis. In contrast, CD5 (Ly-1) B cells, a second B-cell population displaying a characteristic set of cell surface markers which are derived from distinct precursors in the peritoneum, are represented at normal frequencies in these transgenic mice. Thus, the presence of the rearranged immunoglobulin heavy-chain transgene in M54 mice results in an unexpected selective developmental defect that impairs the development of bone-marrow-derived pre-B and B cells without affecting Ly-1 B cells.  相似文献   

7.
The early stages of murine B-cell differentiation are characterized by a series of immunoglobulin gene rearrangements which are required for the assembly of heavy(H) and light(L)-chain variable regions from germline gene segments. Rearrangement at the heavy-chain locus is initiated first and consists of the joining of a diversity (DH) gene segment to a joining (JH) gene segment. This forms a DJH intermediate to which a variable (VH) gene segment is subsequently added. Light-chain gene rearrangement follows and consists of the joining of a VL gene segment to a JL gene segment: once a productive light-chain gene has been formed the cell initiates synthesis of surface immunoglobulin M (sIgM) receptors (reviewed in ref. 1). These receptors are clonally distributed and may undergo further diversification either by somatic mutation or possibly by continued recombinational events. Such recombinational events have been detected in the Ly 1+ B-cell lymphoma NFS-5, which has been shown to rearrange both lambda and H-chain genes subsequent to the formation of sIgM (mu kappa) molecules. Here we have analysed a rearrangement of the productive allele of NFS-5 and found that it is due to a novel recombination event between VH genes which results in the replacement of most or all of the coding sequence of the initial VHQ52 rearrangement by a germline VH7183 gene. Embedded in the VH coding sequence close to the site of the cross-over is the sequence 5' TACTGTG 3', which is identical to the signal heptamer found 5' of many DH gene segments. This embedded heptamer is conserved in over 70% of known VH genes. We suggest that this heptamer mediates VH gene replacement and may play an important part in the development of the antibody repertoire.  相似文献   

8.
Genomic instability promotes tumorigenesis and can occur through various mechanisms, including defective segregation of chromosomes or inactivation of DNA mismatch repair. Although B-cell lymphomas are associated with chromosomal translocations that deregulate oncogene expression, a mechanism for genome-wide instability during lymphomagenesis has not been described. During B-cell development, the immunoglobulin variable (V) region genes are subject to somatic hypermutation in germinal-centre B cells. Here we report that an aberrant hypermutation activity targets multiple loci, including the proto-oncogenes PIM1, MYC, RhoH/TTF (ARHH) and PAX5, in more than 50% of diffuse large-cell lymphomas (DLCLs), which are tumours derived from germinal centres. Mutations are distributed in the 5' untranslated or coding sequences, are independent of chromosomal translocations, and share features typical of V-region-associated somatic hypermutation. In contrast to mutations in V regions, however, these mutations are not detectable in normal germinal-centre B cells or in other germinal-centre-derived lymphomas, suggesting a DLCL-associated malfunction of somatic hypermutation. Intriguingly, the four hypermutable genes are susceptible to chromosomal translocations in the same region, consistent with a role for hypermutation in generating translocations by DNA double-strand breaks. By mutating multiple genes, and possibly by favouring chromosomal translocations, aberrant hypermutation may represent the major contributor to lymphomagenesis.  相似文献   

9.
O M?kel?  G W Litman 《Nature》1980,287(5783):639-640
Individual mammals have the capacity to express at least one million distinct antigen binding specificities, implying a high degree of structural heterogeneity in the variable heavy and light chain (VH and VL) portions of the antibody molecules. Studies of higher vertebrate species suggest that this heterogeneity is created both through a sizeable repertoire of germ-line VH and VL genes and through random rearrangements of V and joining genes. Additional somatic mechanisms probably also contribute to the ultimate heterogeneity; one-third of murine plasmacytomas producing lambda 1 immunoglobulin carry a somatically mutated Ig1-V gene. The relative contributions of these various mechanisms to the overall imunoglobulin variability are difficult to evaluate. The production of different antibodies to a defined determinant in different individuals of an inbred mouse strain [for example, (3-iodo-4-hydroxy-5-nitrophenyl) acetyl (NIP) in CBA mice] suggests the involvement of somatic mutations or rearrangement but does not rule out the possibility that each individual CBA mouse expresses only a small random fraction from a large germ-line repertoire of V genes determining different anti-NIP binding sites. The opposite finding, that different individuals produce nearly identical antibodies to a defined determinant, would suggest the presence and expression of a limited number of germ-line genes without somatic alterations. Data presented here suggest that primitive sharks (Heterodontus fransisci) produce such antibodies to the hapten furyloxazolone.  相似文献   

10.
Immunoglobulin heavy chain binding protein   总被引:23,自引:0,他引:23  
I G Haas  M Wabl 《Nature》1983,306(5941):387-389
Pre-B lymphocytes, and hybridomas derived from them, synthesize immunoglobulin heavy (IgH) chain in the absence of light (L) chain. In the Abelson virus transformed line 18-81, which is representative of the pre-B cell stage, we observed that at least some of the H-chains are bound to a protein other than L-chain. Here we show that the protein (which we term immunoglobulin heavy-chain binding protein, BiP) binds non-covalently to free IgH, but not to IgH associated with IgL.  相似文献   

11.
G K Sim  J Yagüe  J Nelson  P Marrack  E Palmer  A Augustin  J Kappler 《Nature》1984,312(5996):771-775
The T-cell receptor has been studied intensely over the past 10 years in an effort to understand the molecular basis for major histocompatibility complex (MHC) restricted antigen recognition. The use of anti-receptor monoclonal antibodies to isolate and characterize the receptor from human and murine T-cell clones has shown that the protein consists of two disulphide-linked glycopeptides, alpha and beta, distinct from known immunoglobulin light and heavy chains. Like immunoglobulin light and heavy chains, however, both the alpha- and beta-chains are composed of variable and constant regions. Molecular cloning has revealed that the beta-chain is evolutionarily related to immunoglobulins, and is encoded in separate V (variable), D (diversity), J (joining) and C (constant) segments that are rearranged in T cells to produce a functional gene. We report here cDNA clones encoding the alpha-chain of the receptor of the human T-cell leukaemia line HPB-MLT. Using these cDNA probes, we find that expression of alpha-chain mRNA and rearrangement of an alpha-chain V-gene segment occur only in T cells. The protein sequence predicted by these cDNAs is homologous to T-cell receptor beta-chains and to immunoglobulin heavy and light chains, particularly in the V and J segments.  相似文献   

12.
F C Mills  L M Fisher  R Kuroda  A M Ford  H J Gould 《Nature》1983,306(5945):809-812
An immunoglobulin polypeptide chain is encoded by multiple gene segments that lie far apart in germ-line DNA and must be brought together to allow expression of an immunoglobulin gene active in B lymphocytes. For the immunoglobulin heavy chain genes, one of many variable (V) region genes becomes joined to one of several diversity (D) segments which are fused to one of several joining (J) segments lying 5' of the constant region (C) genes. Here we show that the rearranged mu genes of an IgM-producing human B-lymphocyte cell line exhibit pancreatic deoxyribonuclease (DNase I) hypersensitive sites in the JH-C mu intron that are absent in naked DNA or the chromatin of other differentiated cell types. DNA sequence analysis reveals that the major hypersensitive site maps to a conserved region of the JH-C mu intron recently shown to function as a tissue-specific enhancer of heavy-chain gene expression. A similar association of an enhancer-like element with a DNase I hypersensitive site has been reported for the mouse immunoglobulin light-chain J kappa-C kappa intron. These results implicate disruption of local chromatin structure in the mechanism of immunoglobulin enhancer function.  相似文献   

13.
N Nakanishi  K Maeda  K Ito  M Heller  S Tonegawa 《Nature》1987,325(6106):720-723
During the search for genes coding for the mouse alpha and beta subunits of the antigen-specific receptor of mouse T cells we encountered a third gene, subsequently designated gamma. This gene has many properties in common with the alpha and beta genes, somatic assembly from gene segments that resemble the gene segments for immunoglobulin variable (V), joining (J) and constant (C) regions; rearrangement and expression in T cells and not in B cells; low but distinct sequence homology to immunoglobulin V, J and C regions; other sequences that are reminiscent of the transmembrane and intracytoplasmic regions of integral membrane proteins; and a cysteine residue at the position expected for a disulphide bond linking two subunits of a dimeric membrane protein. Despite these similarities the gamma gene also shows some interesting unique features. These include a relatively limited repertoire of the germ-line gene segments, more pronounced expression at the RNA level in immature T cells such as fetal thymocytes and an apparent absence of in-frame RNA in some functional, alpha beta heterodimer-bearing T cells or cultured T clones and hybridomas. To understand the function of the putative gamma protein it is essential to define the cell population that expresses this protein. To this end we produced a fusion protein composed of Escherichia coli beta-galactosidase and the gamma-chain (hereafter referred to a beta-gal-gamma) using the phage expression vector lambda gt11 and raised rabbit antisera against the gamma determinants. Using the purified anti-gamma antibody we detected a polypeptide chain of relative molecular mass 35,000 (Mr 35K) on the surface of 16-day old fetal thymocytes. The gamma-chain is linked by a disulphide bridge to another component of 45K. No such heterodimer was detected on the surface of a cytotoxic T lymphocyte (CTL) clone 2C from which an in-phase gamma cDNA clone was originally isolated.  相似文献   

14.
B A Pollok  J F Kearney  M Vakil  R P Perry 《Nature》1984,311(5984):376-379
One mechanism which generates diversity in immunoglobulin variable (V) regions is flexibility in the site of recombination among the constituent genetic elements. Within a specific antibody family (that is, a particular VH-VL combination), variability in V-D-J rearrangement not only leads to sequence diversity at the boundary of the juxtaposed genes, but also enables the total length of the third complementarity-determining region (CDR-3) of the heavy chain to be conserved. We demonstrate here that the junctional diversity inherent in rearranged immunoglobulin genes can have consequences for the biology of the immune system. Sequence analysis of the expressed immunoglobulin genes of idiotypically variant as opposed to conventional B lymphocytes of a dominant antibody family showed that the variant B cells undergo a novel D-JH joining event such that an extra amino acid is inserted into the heavy chain CDR-3. The unique D-region conformation possessed by the variant B cells accounts for previous observations which showed that variant and conventional B cells could be differentially regulated in vivo by an autologous set of idiotope-specific B lymphocytes. Our findings indicate that D-region structure can determine the expression of regulatory idiotopes and suggest that the conservation of heavy-chain CDR-3 length within an antibody family may reflect regulatory as well as functional constraints.  相似文献   

15.
The finding that the diversity (D) and joining (JH) but not the variable (VH) DNA segments of mouse immunoglobulin heavy-chain genes are joined in the DNA of some cloned cytolytic T cells, led to identification and sequencing of three different D DNA segments. Two segments identified on the embryo DNA carry on both the 5' and 3' sides two sets of characteristic sequences separated by a 12-base pair spacer, which have been implicated as recognition signals for a recombinase. The third segment, identified in a form joined with a JHDNA segment in a T cell, carries the recognition signal on the 5' side. These results support the 12/23-base pair model for somatic generation of immunoglobulin V genes, and rule out the possibility that the cytolytic T cells use assembled VH, D and JH sequences to encode their antigen receptors.  相似文献   

16.
17.
Immunoglobulin heavy-chain switching in pre-B leukaemias   总被引:3,自引:0,他引:3  
H Kubagawa  M Mayumi  W M Crist  M D Cooper 《Nature》1983,301(5898):340-342
  相似文献   

18.
Somatic hypermutation introduces point mutations into immunoglobulin genes in germinal centre B cells during an immune response. The reaction is initiated by cytosine deamination by the activation-induced deaminase (AID) and completed by error-prone processing of the resulting uracils by mismatch and base excision repair factors. Somatic hypermutation represents a threat to genome integrity and it is not known how the B cell genome is protected from the mutagenic effects of somatic hypermutation nor how often these protective mechanisms fail. Here we show, by extensive sequencing of murine B cell genes, that the genome is protected by two distinct mechanisms: selective targeting of AID and gene-specific, high-fidelity repair of AID-generated uracils. Numerous genes linked to B cell tumorigenesis, including Myc, Pim1, Pax5, Ocab (also called Pou2af1), H2afx, Rhoh and Ebf1, are deaminated by AID but escape acquisition of most mutations through the combined action of mismatch and base excision repair. However, approximately 25% of expressed genes analysed were not fully protected by either mechanism and accumulated mutations in germinal centre B cells. Our results demonstrate that AID acts broadly on the genome, with the ultimate distribution of mutations determined by a balance between high-fidelity and error-prone DNA repair.  相似文献   

19.
F Rupp  H Acha-Orbea  H Hengartner  R Zinkernagel  R Joho 《Nature》1985,315(6018):425-427
T lymphocytes involved in the cellular immune response carry cell-surface receptors responsible for antigen and self recognition. This T-cell receptor molecule is a heterodimeric protein consisting of disulphide-linked alpha- and beta-chains with variable (V) and constant (C) regions. Several complementary DNA and genomic DNA clones have been isolated and characterized. These analyses showed that the genomic arrangement and rearrangement of T-cell receptor genes using VT, diversity (DT), joining (JT) and CT gene segments is very similar to the structure of the known immunoglobulin genes. We have isolated two cDNA clones from an allospecific cytotoxic T cell, one of which shows a productive V beta-J beta-C beta 1 rearrangement without an intervening D beta segment. This V beta gene segment is identical to the V beta gene expressed in a helper T-cell clone specific for chicken red blood cells and H-21. The other clone carries the C beta 2 gene of the T-cell receptor, but the C beta 2 sequence is preceded by a DNA sequence that does not show any similarity to V beta or J beta sequences.  相似文献   

20.
A Ochi  R G Hawley  M J Shulman  N Hozumi 《Nature》1983,302(5906):340-342
The expression of immunoglobulin (Ig) genes is regulated at several levels. For example, although kappa-chain production requires a DNA rearrangement that juxtaposes variable and joining segments, this rearrangement is not sufficient for kappa-chain gene expression; that is, some cell types do not permit immunoglobulin production. The mechanisms responsible for the regulation of the expression of rearranged immunoglobulin genes are poorly understood. The technique of modifying cloned genes in vitro and transferring the modified genes to cells in culture provides a tool for identifying the structural features required for gene expression. To analyse immunoglobulin genes in this manner, however, it is first necessary to use, as recipients, cells that normally permit immunoglobulin production. We report here that a cloned kappa-chain gene is expressed in immunoglobulin-producing hybridoma cells. Furthermore, the product of the transferred kappa-chain gene is capable of restoring specific antibody production to the transformed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号