首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
W S Paterson  N Reeh 《Nature》2001,414(6859):60-62
Thermal expansion of the oceans, as well as melting of glaciers, ice sheets and ice caps have been the main contributors to global sea level rise over the past century. The greatest uncertainty in predicting future sea level changes lies with our estimates of the mass balance of the ice sheets in Greenland and Antarctica. Satellite measurements have been used to determine changes in these ice sheets on short timescales, demonstrating that surface-elevation changes on timescales of decades or less result mainly from variations in snow accumulation. Here we present direct measurements of the changes in surface elevation between 1954 and 1995 on a traverse across the north Greenland ice sheet. Measurements over a time interval of this length should reflect changes in ice flow-the important quantity for predicting changes in sea level-relatively unperturbed by short-term fluctuations in snow accumulation. We find only small changes in the eastern part of the transect, except for some thickening of the north ice stream. On the west side, however, the thinning rates of the ice sheet are significantly higher and thinning extends to higher elevations than had been anticipated from previous studies.  相似文献   

2.
High interannual variability of sea ice thickness in the Arctic region   总被引:9,自引:0,他引:9  
Laxon S  Peacock N  Smith D 《Nature》2003,425(6961):947-950
Possible future changes in Arctic sea ice cover and thickness, and consequent changes in the ice-albedo feedback, represent one of the largest uncertainties in the prediction of future temperature rise. Knowledge of the natural variability of sea ice thickness is therefore critical for its representation in global climate models. Numerical simulations suggest that Arctic ice thickness varies primarily on decadal timescales owing to changes in wind and ocean stresses on the ice, but observations have been unable to provide a synoptic view of sea ice thickness, which is required to validate the model results. Here we use an eight-year time-series of Arctic ice thickness, derived from satellite altimeter measurements of ice freeboard, to determine the mean thickness field and its variability from 65 degrees N to 81.5 degrees N. Our data reveal a high-frequency interannual variability in mean Arctic ice thickness that is dominated by changes in the amount of summer melt, rather than by changes in circulation. Our results suggest that a continued increase in melt season length would lead to further thinning of Arctic sea ice.  相似文献   

3.
Recent contributions of glaciers and ice caps to sea level rise   总被引:22,自引:0,他引:22  
Jacob T  Wahr J  Pfeffer WT  Swenson S 《Nature》2012,482(7386):514-518
Glaciers and ice caps (GICs) are important contributors to present-day global mean sea level rise. Most previous global mass balance estimates for GICs rely on extrapolation of sparse mass balance measurements representing only a small fraction of the GIC area, leaving their overall contribution to sea level rise unclear. Here we show that GICs, excluding the Greenland and Antarctic peripheral GICs, lost mass at a rate of 148?±?30?Gt?yr(-1) from January 2003 to December 2010, contributing 0.41?±?0.08?mm?yr(-1) to sea level rise. Our results are based on a global, simultaneous inversion of monthly GRACE-derived satellite gravity fields, from which we calculate the mass change over all ice-covered regions greater in area than 100?km(2). The GIC rate for 2003-2010 is about 30 per cent smaller than the previous mass balance estimate that most closely matches our study period. The high mountains of Asia, in particular, show a mass loss of only 4?±?20?Gt?yr(-1) for 2003-2010, compared with 47-55?Gt?yr(-1) in previously published estimates. For completeness, we also estimate that the Greenland and Antarctic ice sheets, including their peripheral GICs, contributed 1.06?±?0.19?mm?yr(-1) to sea level rise over the same time period. The total contribution to sea level rise from all ice-covered regions is thus 1.48?±?0.26?mm?(-1), which agrees well with independent estimates of sea level rise originating from land ice loss and other terrestrial sources.  相似文献   

4.
Raper SC  Braithwaite RJ 《Nature》2006,439(7074):311-313
The mean sea level has been projected to rise in the 21st century as a result of global warming. Such projections of sea level change depend on estimated future greenhouse emissions and on differing models, but model-average results from a mid-range scenario (A1B) suggests a 0.387-m rise by 2100 (refs 1, 2). The largest contributions to sea level rise are estimated to come from thermal expansion (0.288 m) and the melting of mountain glaciers and icecaps (0.106 m), with smaller inputs from Greenland (0.024 m) and Antarctica (- 0.074 m). Here we apply a melt model and a geometric volume model to our lower estimate of ice volume and assess the contribution of glaciers to sea level rise, excluding those in Greenland and Antarctica. We provide the first separate assessment of melt contributions from mountain glaciers and icecaps, as well as an improved treatment of volume shrinkage. We find that icecaps melt more slowly than mountain glaciers, whose area declines rapidly in the 21st century, making glaciers a limiting source for ice melt. Using two climate models, we project sea level rise due to melting of mountain glaciers and icecaps to be 0.046 and 0.051 m by 2100, about half that of previous projections.  相似文献   

5.
考虑到海上风力发电机可能会受到冰载荷的影响,将随机冰力函数模型添加到风力发电机模型中,利用莫里森方程模拟海浪作用,建立复杂海况下多体动力学联合仿真模型,进行多场耦合作用下的风力机动力学特性分析,以此评估风力机系统在复杂工况下的运行风险。结果表明:风力机塔顶位移的波动主要受风载的影响;波浪、海冰对塔基载荷性能影响较大,会使塔筒产生持续振动并引发疲劳破坏,风冰联合作用时振动更为剧烈;由于海冰的持续撞击作用会使塔基载荷普遍大于无海冰作用情形,因此,针对海冰工况下风力发电机的设计要有所修正及完善。  相似文献   

6.
Mass and volume contributions to twentieth-century global sea level rise   总被引:2,自引:0,他引:2  
Miller L  Douglas BC 《Nature》2004,428(6981):406-409
The rate of twentieth-century global sea level rise and its causes are the subjects of intense controversy. Most direct estimates from tide gauges give 1.5-2.0 mm yr(-1), whereas indirect estimates based on the two processes responsible for global sea level rise, namely mass and volume change, fall far below this range. Estimates of the volume increase due to ocean warming give a rate of about 0.5 mm yr(-1) (ref. 8) and the rate due to mass increase, primarily from the melting of continental ice, is thought to be even smaller. Therefore, either the tide gauge estimates are too high, as has been suggested recently, or one (or both) of the mass and volume estimates is too low. Here we present an analysis of sea level measurements at tide gauges combined with observations of temperature and salinity in the Pacific and Atlantic oceans close to the gauges. We find that gauge-determined rates of sea level rise, which encompass both mass and volume changes, are two to three times higher than the rates due to volume change derived from temperature and salinity data. Our analysis supports earlier studies that put the twentieth-century rate in the 1.5-2.0 mm yr(-1) range, but more importantly it suggests that mass increase plays a larger role than ocean warming in twentieth-century global sea level rise.  相似文献   

7.
Acceleration of Greenland ice mass loss in spring 2004   总被引:7,自引:0,他引:7  
Velicogna I  Wahr J 《Nature》2006,443(7109):329-331
In 2001 the Intergovernmental Panel on Climate Change projected the contribution to sea level rise from the Greenland ice sheet to be between -0.02 and +0.09 m from 1990 to 2100 (ref. 1). However, recent work has suggested that the ice sheet responds more quickly to climate perturbations than previously thought, particularly near the coast. Here we use a satellite gravity survey by the Gravity Recovery and Climate Experiment (GRACE) conducted from April 2002 to April 2006 to provide an independent estimate of the contribution of Greenland ice mass loss to sea level change. We detect an ice mass loss of 248 +/- 36 km3 yr(-1), equivalent to a global sea level rise of 0.5 +/- 0.1 mm yr(-1). The rate of ice loss increased by 250 per cent between the periods April 2002 to April 2004 and May 2004 to April 2006, almost entirely due to accelerated rates of ice loss in southern Greenland; the rate of mass loss in north Greenland was almost constant. Continued monitoring will be needed to identify any future changes in the rate of ice loss in Greenland.  相似文献   

8.
渤海辽东湾海冰条件的概率分析   总被引:2,自引:0,他引:2  
本文利用辽东湾海域及其沿岸台站多年的海冰观测资料和有关气象资料,对该海域的海冰条件以及相应的气候规律进行了概率分析、研究了辽东湾南北两个分区的划分、冰厚与气温的关系、冰厚的极值概率分布、太阳黑子数以及El Nino现象对渤海冰情的影响及其长期变化的规律,得到一些可供辽东湾抗冰平台设计参考的数据和结论。  相似文献   

9.
Cuffey KM  Marshall SJ 《Nature》2000,404(6778):591-594
During the last interglacial period (the Eemian), global sea level was at least three metres, and probably more than five metres, higher than at present. Complete melting of either the West Antarctic ice sheet or the Greenland ice sheet would today raise sea levels by 6-7 metres. But the high sea levels during the last interglacial period have been proposed to result mainly from disintegration of the West Antarctic ice sheet, with model studies attributing only 1-2 m of sea-level rise to meltwater from Greenland. This result was considered consistent with ice core evidence, although earlier work had suggested a much reduced Greenland ice sheet during the last interglacial period. Here we reconsider the Eemian evolution of the Greenland ice sheet by combining numerical modelling with insights obtained from recent central Greenland ice-core analyses. Our results suggest that the Greenland ice sheet was considerably smaller and steeper during the Eemian, and plausibly contributed 4-5.5 m to the sea-level highstand during that period. We conclude that the high sea level during the last interglacial period most probably included a large contribution from Greenland meltwater and therefore should not be interpreted as evidence for a significant reduction of the West Antarctic ice sheet.  相似文献   

10.
回顾北冰洋海平面观测和研究现状,总结了北冰洋海平面变化特征和变化机制。北冰洋海平面季节变化受海冰生消、蒸发降水和陆地径流季节变化的影响,由比容变化主导;年际到年代际海平面变化受北极涛动影响显著,可用风场异常导致的淡水分布来解释。盐比容变化是深水洋盆海平面变化的主导因素,由之引起的质量变化控制陆架海域和北冰洋平均的海平面变化。近期波弗特环流区域海平面上升极快,与波弗特高压持续增强及淡水积聚有关。气候变暖会导致北冰洋海平面持续上升。海冰快速减退和格陵兰岛冰川融化对北冰洋海平面变化的影响有待深入研究。数据的短缺和观测的不确定性目前仍然制约北冰洋海平面变化的研究工作,高分辨率数值模拟有望成为未来研究的重要工具。  相似文献   

11.
随着我国经济建设的快速发展,近几十年来大型的跨海桥梁工程结构不断涌现,服役期内跨海大桥可能同时承受风、波浪、海流、海冰、潮汐和地震等其中的几种联合作用,有关此方面的理论、数值和试验研究还比较缺乏.主要对近年来跨海桥梁结构在承受波浪、海流、地震单独或联合作用下的理论、数值、试验研究与进展进行了综述,并对桥梁结构考虑波浪、海流作用的水下振动台试验的发展进行了展望.  相似文献   

12.
利用九层菱形截断15波的全球大气环流谱模式,对赤道西太平洋海表温度,北极海冰及综合异常精形在北半球夏季大气环流中的作用进行了一系列数值试验和分析。结果表明:赤道西太平洋海表温度的异常变化与北极海冰面呼焦异均可显著影响大气环流,但海冰异常对低纬大气环流的影响远小于西太平洋的海温异常的影响。对全球大气环流异常形成机制的讨论,表二维Rossby波开的传播及外强迫引起的大气内部动力学过程虽夏季大气环流异常  相似文献   

13.
武都黄土堆积及晚更新世以来环境变迁研究   总被引:3,自引:1,他引:3  
武都黄土剖面的研究结果表明:它完整且高分辩率地记录了晚更新以来气候环境变化的历史,清晰易辨的黄土-古土壤系列和稳定的磁化率特征反映了这种变化的全过程;系统的元素地球化学分析证明了武都黄土物质构成主体部分与黄土高原一致;大旋回,大幅度的粒度变化特点说明受控于远距离,大尺度搬运过程及风力强弱的交替。  相似文献   

14.
LJ Gregoire  AJ Payne  PJ Valdes 《Nature》2012,487(7406):219-222
The last deglaciation (21 to 7 thousand years ago) was punctuated by several abrupt meltwater pulses, which sometimes caused noticeable climate change. Around 14 thousand years ago, meltwater pulse 1A (MWP-1A), the largest of these events, produced a sea level rise of 14-18?metres over 350?years. Although this enormous surge of water certainly originated from retreating ice sheets, there is no consensus on the geographical source or underlying physical mechanisms governing the rapid sea level rise. Here we present an ice-sheet modelling simulation in which the separation of the Laurentide and Cordilleran ice sheets in North America produces a meltwater pulse corresponding to MWP-1A. Another meltwater pulse is produced when the Labrador and Baffin ice domes around Hudson Bay separate, which could be associated with the '8,200-year' event, the most pronounced abrupt climate event of the past nine thousand years. For both modelled pulses, the saddle between the two ice domes becomes subject to surface melting because of a general surface lowering caused by climate warming. The melting then rapidly accelerates as the saddle between the two domes gets lower, producing nine metres of sea level rise over 500 years. This mechanism of an ice 'saddle collapse' probably explains MWP-1A and the 8,200-year event and sheds light on the consequences of these events on climate.  相似文献   

15.
One year of ocean topography experiment (TOPEX) altimeter data are used to study the seasonal variations of global sea surface wind speed and significant wave height. The major wind and wave zones of the world oceans are precisely identified, their seasonal variability and characteristics are quantitatively analyzed, and the diversity of global wind speed seasonality and the variability of significant wave height in response to sea surface wind speed are also revealed.  相似文献   

16.
Mitrovica JX  Tamisiea ME  Davis JL  Milne GA 《Nature》2001,409(6823):1026-1029
Global sea level is an indicator of climate change, as it is sensitive to both thermal expansion of the oceans and a reduction of land-based glaciers. Global sea-level rise has been estimated by correcting observations from tide gauges for glacial isostatic adjustment--the continuing sea-level response due to melting of Late Pleistocene ice--and by computing the global mean of these residual trends. In such analyses, spatial patterns of sea-level rise are assumed to be signals that will average out over geographically distributed tide-gauge data. But a long history of modelling studies has demonstrated that non-uniform--that is, non-eustatic--sea-level redistributions can be produced by variations in the volume of the polar ice sheets. Here we present numerical predictions of gravitationally consistent patterns of sea-level change following variations in either the Antarctic or Greenland ice sheets or the melting of a suite of small mountain glaciers. These predictions are characterized by geometrically distinct patterns that reconcile spatial variations in previously published sea-level records. Under the--albeit coarse--assumption of a globally uniform thermal expansion of the oceans, our approach suggests melting of the Greenland ice complex over the last century equivalent to -0.6 mm yr(-1) of sea-level rise.  相似文献   

17.
A Kääb  E Berthier  C Nuth  J Gardelle  Y Arnaud 《Nature》2012,488(7412):495-498
Glaciers are among the best indicators of terrestrial climate variability, contribute importantly to water resources in many mountainous regions and are a major contributor to global sea level rise. In the Hindu Kush-Karakoram-Himalaya region (HKKH), a paucity of appropriate glacier data has prevented a comprehensive assessment of current regional mass balance. There is, however, indirect evidence of a complex pattern of glacial responses in reaction to heterogeneous climate change signals. Here we use satellite laser altimetry and a global elevation model to show widespread glacier wastage in the eastern, central and south-western parts of the HKKH during 2003-08. Maximal regional thinning rates were 0.66?±?0.09 metres per year in the Jammu-Kashmir region. Conversely, in the Karakoram, glaciers thinned only slightly by a few centimetres per year. Contrary to expectations, regionally averaged thinning rates under debris-mantled ice were similar to those of clean ice despite insulation by debris covers. The 2003-08 specific mass balance for our entire HKKH study region was -0.21?±?0.05?m?yr(-1) water equivalent, significantly less negative than the estimated global average for glaciers and ice caps. This difference is mainly an effect of the balanced glacier mass budget in the Karakoram. The HKKH sea level contribution amounts to one per cent of the present-day sea level rise. Our 2003-08 mass budget of -12.8?±?3.5 gigatonnes (Gt) per year is more negative than recent satellite-gravimetry-based estimates of -5?±?3?Gt?yr(-1) over 2003-10 (ref. 12). For the mountain catchments of the Indus and Ganges basins, the glacier imbalance contributed about 3.5% and about 2.0%, respectively, to the annual average river discharge, and up to 10% for the Upper Indus basin.  相似文献   

18.
近十年我国海平面变化研究进展   总被引:1,自引:0,他引:1  
系统地回顾了2006—2015年我国在海平面变化规律、机制及影响领域的最新研究进展。分析了全球及区域海平面以及比容海平面在不同时间尺度上的变化规律;探讨了海平面的变化机制,海表热通量、淡水通量、环流、风应力以及Rossby波对不同区域海平面变化的动力及热力影响;采用统计方法和数值模拟等手段,对21世纪海平面变化进行了预测;同时海平面变化会影响海洋的动力过程(如潮波系统的变化),并进而对近海和海岸带环境产生重要影响(如海岸侵蚀、海水入侵和土地盐渍化、河口咸潮入侵、近岸低地淹没、红树林衰退等)。  相似文献   

19.
Rohling EJ  Marsh R  Wells NC  Siddall M  Edwards NR 《Nature》2004,430(7003):1016-1021
The period between 75,000 and 20,000 years ago was characterized by high variability in climate and sea level. Southern Ocean records of ice-rafted debris suggest a significant contribution to the sea level changes from melt water of Antarctic origin, in addition to likely contributions from northern ice sheets, but the relative volumes of melt water from northern and southern sources have yet to be established. Here we simulate the first-order impact of a range of relative meltwater releases from the two polar regions on the distribution of marine oxygen isotopes, using an intermediate complexity model. By comparing our simulations with oxygen isotope data from sediment cores, we infer that the contributions from Antarctica and the northern ice sheets to the documented sea level rises between 65,000 and 35,000 years ago were approximately equal, each accounting for a rise of about 15 m. The reductions in Antarctic ice volume implied by our analysis are comparable to that inferred previously for the Antarctic contribution to meltwater pulse 1A (refs 16, 17), which occurred about 14,200 years ago, during the last deglaciation.  相似文献   

20.
海平面上升及其对上海市可持续发展的影响   总被引:3,自引:0,他引:3  
根据已有研究表明,全球海平面在未来的几十年内仍将持续上升,自1990-2100年,全球绝对海平面将上升9~88cm,对于上海市,由于其特殊的地理位置及地理条件,相对海平面变化幅度将远远大于全球海平面变化平均水平,为此就海平面变化对上海市可持续发展的影响作初步探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号