首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Xiong Y  Steitz TA 《Nature》2004,430(7000):640-645
Transfer RNA nucleotidyltransferases (CCA-adding enzymes) are responsible for the maturation or repair of the functional 3' end of tRNAs by means of the addition of the essential nucleotides CCA. However, it is unclear how tRNA nucleotidyltransferases polymerize CCA onto the 3' terminus of immature tRNAs without using a nucleic acid template. Here we describe the crystal structure of the Archaeoglobus fulgidus tRNA nucleotidyltransferase in complex with tRNA. We also present ternary complexes of this enzyme with both RNA duplex mimics of the tRNA acceptor stem that terminate with the nucleotides C74 or C75, as well as the appropriate incoming nucleoside 5'-triphosphates. A single nucleotide-binding pocket exists whose specificity for both CTP and ATP is determined by the protein side chain of Arg 224 and backbone phosphates of the tRNA, which are non-complementary to and thus exclude UTP and GTP. Discrimination between CTP or ATP at a given addition step and at termination arises from changes in the size and shape of the nucleotide binding site that is progressively altered by the elongating 3' end of the tRNA.  相似文献   

2.
Randau L  Schröder I  Söll D 《Nature》2008,453(7191):120-123
  相似文献   

3.
Beebe K  Mock M  Merriman E  Schimmel P 《Nature》2008,451(7174):90-93
Synthesis of proteins containing errors (mistranslation) is prevented by aminoacyl transfer RNA synthetases through their accurate aminoacylation of cognate tRNAs and their ability to correct occasional errors of aminoacylation by editing reactions. A principal source of mistranslation comes from mistaking glycine or serine for alanine, which can lead to serious cell and animal pathologies, including neurodegeneration. A single specific G.U base pair (G3.U70) marks a tRNA for aminoacylation by alanyl-tRNA synthetase. Mistranslation occurs when glycine or serine is joined to the G3.U70-containing tRNAs, and is prevented by the editing activity that clears the mischarged amino acid. Previously it was assumed that the specificity for recognition of tRNA(Ala) for editing was provided by the same structural determinants as used for aminoacylation. Here we show that the editing site of alanyl-tRNA synthetase, as an artificial recombinant fragment, targets mischarged tRNA(Ala) using a structural motif unrelated to that for aminoacylation so that, remarkably, two motifs (one for aminoacylation and one for editing) in the same enzyme independently can provide determinants for tRNA(Ala) recognition. The structural motif for editing is also found naturally in genome-encoded protein fragments that are widely distributed in evolution. These also recognize mischarged tRNA(Ala). Thus, through evolution, three different complexes with the same tRNA can guard against mistaking glycine or serine for alanine.  相似文献   

4.
M Jahn  M J Rogers  D S?ll 《Nature》1991,352(6332):258-260
The correct attachment of amino acids to their corresponding (cognate) transfer RNA catalysed by aminoacyl-tRNA synthetases is a key factor in ensuring the fidelity of protein biosynthesis. Previous studies have demonstrated that the interaction of Escherichia coli tRNA(Gln) with glutaminyl-tRNA synthetase (GlnRS) provides an excellent system to study this highly specific recognition process, also referred to as 'tRNA identity'. Accurate acylation of tRNA depends mainly on two principles: a set of nucleotides in the tRNA molecule (identity elements) responsible for proper discrimination by aminoacyl-tRNA synthetases and competition between different synthetases for tRNAs. Elements of glutamine identity are located in the anticodon and in the acceptor stem region, including the discriminator base. We report here the production of more than 20 tRNA(2Gln) mutants at positions likely to be involved in tRNA discrimination by the enzyme. Unmodified tRNA, containing the wild-type anticodon and U or G at its 5'-terminus, can be aminocylated by GlnRS with similar kinetic parameters to native tRNA(2Gln). By in vitro aminoacylation the mutant tRNAs showed decreases of up to 3 x 10(5)-fold in the specificity constant (kcat/KM)14 with the major contribution of kcat. Despite these large changes, some of these mutant tRNAs are efficient amber suppressors in vivo. Our results show that strong elements for glutamine identity reside in the anticodon region and in positions 2 and 3 of the acceptor stem, and that the contribution of different identity elements to the overall discrimination varies significantly. We discuss our data in the light of the crystal structure of the GlnRS:tRNA(Gln) complex.  相似文献   

5.
Ribonuclease (RNase) P is the universal ribozyme responsible for 5'-end tRNA processing. We report the crystal structure of the Thermotoga maritima RNase P holoenzyme in complex with tRNA(Phe). The 154?kDa complex consists of a large catalytic RNA (P RNA), a small protein cofactor and a mature tRNA. The structure shows that RNA-RNA recognition occurs through shape complementarity, specific intermolecular contacts and base-pairing interactions. Soaks with a pre-tRNA 5' leader sequence with and without metal help to identify the 5' substrate path and potential catalytic metal ions. The protein binds on top of a universally conserved structural module in P RNA and interacts with the leader, but not with the mature tRNA. The active site is composed of phosphate backbone moieties, a universally conserved uridine nucleobase, and at least two catalytically important metal ions. The active site structure and conserved RNase P-tRNA contacts suggest a universal mechanism of catalysis by RNase P.  相似文献   

6.
7.
Krasilnikov AS  Yang X  Pan T  Mondragón A 《Nature》2003,421(6924):760-764
RNase P is the only endonuclease responsible for processing the 5' end of transfer RNA by cleaving a precursor and leading to tRNA maturation. It contains an RNA component and a protein component and has been identified in all organisms. It was one of the first catalytic RNAs identified and the first that acts as a multiple-turnover enzyme in vivo. RNase P and the ribosome are so far the only two ribozymes known to be conserved in all kingdoms of life. The RNA component of bacterial RNase P can catalyse pre-tRNA cleavage in the absence of the RNase P protein in vitro and consists of two domains: a specificity domain and a catalytic domain. Here we report a 3.15-A resolution crystal structure of the 154-nucleotide specificity domain of Bacillus subtilis RNase P. The structure reveals the architecture of this domain, the interactions that maintain the overall fold of the molecule, a large non-helical but well-structured module that is conserved in all RNase P RNA, and the regions that are involved in interactions with the substrate.  相似文献   

8.
Tomita K  Fukai S  Ishitani R  Ueda T  Takeuchi N  Vassylyev DG  Nureki O 《Nature》2004,430(7000):700-704
The 3'-terminal CCA nucleotide sequence (positions 74-76) of transfer RNA is essential for amino acid attachment and interaction with the ribosome during protein synthesis. The CCA sequence is synthesized de novo and/or repaired by a template-independent RNA polymerase, 'CCA-adding enzyme', using CTP and ATP as substrates. Despite structural and biochemical studies, the mechanism by which the CCA-adding enzyme synthesizes the defined sequence without a nucleic acid template remains elusive. Here we present the crystal structure of Aquifex aeolicus CCA-adding enzyme, bound to a primer tRNA lacking the terminal adenosine and an incoming ATP analogue, at 2.8 A resolution. The enzyme enfolds the acceptor T helix of the tRNA molecule. In the catalytic pocket, C75 is adjacent to ATP, and their base moieties are stacked. The complementary pocket for recognizing C74-C75 of tRNA forms a 'protein template' for the penultimate two nucleotides, mimicking the nucleotide template used by template-dependent polymerases. These results are supported by systematic analyses of mutants. Our structure represents the 'pre-insertion' stage of selecting the incoming nucleotide and provides the structural basis for the mechanism underlying template-independent RNA polymerization.  相似文献   

9.
Xiao H  Murakami H  Suga H  Ferré-D'Amaré AR 《Nature》2008,454(7202):358-361
In modern organisms, protein enzymes are solely responsible for the aminoacylation of transfer RNA. However, the evolution of protein synthesis in the RNA world required RNAs capable of catalysing this reaction. Ribozymes that aminoacylate RNA by using activated amino acids have been discovered through selection in vitro. Flexizyme is a 45-nucleotide ribozyme capable of charging tRNA in trans with various activated l-phenylalanine derivatives. In addition to a more than 10(5) rate enhancement and more than 10(4)-fold discrimination against some non-cognate amino acids, this ribozyme achieves good regioselectivity: of all the hydroxyl groups of a tRNA, it exclusively aminoacylates the terminal 3'-OH. Here we report the 2.8-A resolution structure of flexizyme fused to a substrate RNA. Together with randomization of ribozyme core residues and reselection, this structure shows that very few nucleotides are needed for the aminoacylation of specific tRNAs. Although it primarily recognizes tRNA through base-pairing with the CCA terminus of the tRNA molecule, flexizyme makes numerous local interactions to position the acceptor end of tRNA precisely. A comparison of two crystallographically independent flexizyme conformations, only one of which appears capable of binding activated phenylalanine, suggests that this ribozyme may achieve enhanced specificity by coupling active-site folding to tRNA docking. Such a mechanism would be reminiscent of the mutually induced fit of tRNA and protein employed by some aminoacyl-tRNA synthetases to increase specificity.  相似文献   

10.
11.
Aminoacylation of RNA minihelices with alanine   总被引:39,自引:0,他引:39  
C Francklyn  P Schimmel 《Nature》1989,337(6206):478-481
The genetic code is determined by both the specificity of the triplet anticodon of tRNAs for codons in mRNAs and the specificity with which tRNAs are charged with amino acids. The latter depends on interactions between tRNAs and their charging enzymes, and an advance in understanding such interactions was provided recently by the demonstration that a major determinant of the identity of alanine tRNA is located in the amino-acid acceptor helix. Multiple substitutions in many distinct parts of the molecule do not prevent aminoacylation with alanine. Substitution of the G3.U70 base pair with G3.C70 or A3.U70 in the acceptor helix prevents aminoacylation in vivo and in vitro, however, and the introduction of this base pair into tRNA(Cys) (ref. 1) or tRNA(Phe) (refs 1, 2) enables both to accept alanine. The importance of a single base pair in the acceptor helix and the results of recent footprinting experiments promoted us to investigate the possibility that a minihelix, composed only of the amino-acid acceptor-T psi C helix, could be a substrate for alanine tRNA synthetase. We show here that a synthetic hairpin minihelix can be enzymatically aminoacylated with alanine. Alanine incorporation requires a single G.U base pair, and occurs in helices that otherwise differ significantly in sequence. Aminoacylation can be achieved with only seven base pairs in the helix.  相似文献   

12.
13.
14.
Relaxation of a transfer RNA specificity by removal of modified nucleotides   总被引:26,自引:0,他引:26  
V Perret  A Garcia  H Grosjean  J P Ebel  C Florentz  R Giegé 《Nature》1990,344(6268):787-789
  相似文献   

15.
16.
Trotta CR  Paushkin SV  Patel M  Li H  Peltz SW 《Nature》2006,441(7091):375-377
Splicing is required for the removal of introns from a subset of transfer RNAs in all eukaryotic organisms. The first step of splicing, intron recognition and cleavage, is performed by the tRNA-splicing endonuclease, a tetrameric enzyme composed of the protein subunits Sen54, Sen2, Sen34 and Sen15. It has previously been demonstrated that the active sites for cleavage at the 5' and 3' splice sites of precursor tRNA are contained within Sen2 and Sen34, respectively. A recent structure of an archaeal endonuclease complexed with a bulge-helix-bulge RNA has led to the unexpected hypothesis that catalysis requires a critical 'cation-pi sandwich' composed of two arginine residues that serve to position the RNA substrate within the active site. This motif is derived from a cross-subunit interaction between the two catalytic subunits. Here we test the role of this interaction within the eukaryotic endonuclease and show that catalysis at the 5' splice site requires the conserved cation-pi sandwich derived from the Sen34 subunit in addition to the catalytic triad of Sen2. The catalysis of pre-tRNA by the eukaryotic tRNA-splicing endonuclease therefore requires a previously unrecognized composite active site.  相似文献   

17.
P Bouvet  J G Belasco 《Nature》1992,360(6403):488-491
Despite the variety of messenger RNA half-lives in bacteria (0.5-30 min in Escherichia coli) and their importance in controlling gene expression, their molecular basis remains obscure. The lifetime of an entire mRNA molecule can be determined by features near its 5' end, but no 5' exoribonuclease has been identified in any prokaryotic organism. A mutation that inactivates E. coli RNase E also increases the average lifetime of bulk E. coli mRNA and of many individual messages, suggesting that cleavage by this endonuclease may be the rate-determining step in the degradation of most mRNAs in E. coli. We have investigated the substrate preference of RNase E in E. coli by using variants of RNA I, a small untranslated RNA whose swift degradation in vivo is initiated by RNase E cleavage at an internal site. We report here that RNase E has an unprecedented substrate specificity for an endoribonuclease, as it preferentially cleaves RNAs that have several unpaired nucleotides at the 5' end. The sensitivity of RNase E to 5'-terminal base pairing may explain how determinants near the 5' end can control rates of mRNA decay in bacteria.  相似文献   

18.
Transfer RNA (tRNA) is produced as a precursor molecule that needs to be processed at its 3' and 5' ends. Ribonuclease P is the sole endonuclease responsible for processing the 5' end of tRNA by cleaving the precursor and leading to tRNA maturation. It was one of the first catalytic RNA molecules identified and consists of a single RNA component in all organisms and only one protein component in bacteria. It is a true multi-turnover ribozyme and one of only two ribozymes (the other being the ribosome) that are conserved in all kingdoms of life. Here we show the crystal structure at 3.85 A resolution of the RNA component of Thermotoga maritima ribonuclease P. The entire RNA catalytic component is revealed, as well as the arrangement of the two structural domains. The structure shows the general architecture of the RNA molecule, the inter- and intra-domain interactions, the location of the universally conserved regions, the regions involved in pre-tRNA recognition and the location of the active site. A model with bound tRNA is in agreement with all existing data and suggests the general basis for RNA-RNA recognition by this ribozyme.  相似文献   

19.
20.
Ma JB  Yuan YR  Meister G  Pei Y  Tuschl T  Patel DJ 《Nature》2005,434(7033):666-670
RNA interference (RNAi) is a conserved sequence-specific gene regulatory mechanism mediated by the RNA-induced silencing complex (RISC), which is composed of a single-stranded guide RNA and an Argonaute protein. The PIWI domain, a highly conserved motif within Argonaute, has been shown to adopt an RNase H fold critical for the endonuclease cleavage activity of RISC. Here we report the crystal structure of Archaeoglobus fulgidus Piwi protein bound to double-stranded RNA, thereby identifying the binding pocket for guide-strand 5'-end recognition and providing insight into guide-strand-mediated messenger RNA target recognition. The phosphorylated 5' end of the guide RNA is anchored within a highly conserved basic pocket, supplemented by the carboxy-terminal carboxylate and a bound divalent cation. The first nucleotide from the 5' end of the guide RNA is unpaired and stacks over a conserved tyrosine residue, whereas successive nucleotides form a four-base-pair RNA duplex. Mutation of the corresponding amino acids that contact the 5' phosphate in human Ago2 resulted in attenuated mRNA cleavage activity. Our structure of the Piwi-RNA complex, and that determined elsewhere, provide direct support for the 5' region of the guide RNA serving as a nucleation site for pairing with target mRNA and for a fixed distance separating the RISC-mediated mRNA cleavage site from the anchored 5' end of the guide RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号