首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W B Wood 《Nature》1991,349(6309):536-538
Many animals with overall bilateral symmetry also exhibit some left-right asymmetries with generally invariant handedness. Therefore, the left-right embryonic axis must have a consistent polarity, whose origins and subsequent effects on development are not understood. Caenorhabditis elegans exhibits such left-right asymmetries at all developmental stages. The embryonic cell lineage is asymmetric as well: although the animal is generally bilaterally symmetric, many of its contralaterally analogous cells arise from different lineages on the two sides of the embryo. I accomplished reversal of embryonic handedness by micromanipulation at the 6-cell stage, which resulted in mirror-image but otherwise normal development into healthy, fertile animals with all the usual left-right asymmetries reversed. This result demonstrates that in the 6-cell embryo the pair of anterior (AB) blastomeres on the right is equivalent to the pair on the left, and that the extensive differences in fates between lineally homologous derivatives of these cells on the two sides of the animal must be dictated by cell interactions, most of which are likely to occur early in embryogenesis.  相似文献   

2.
Cell lineages generating axial muscle in the zebrafish embryo   总被引:3,自引:0,他引:3  
C B Kimmel  R M Warga 《Nature》1987,327(6119):234-237
Cell lineage may contribute to determining the numbers, positions and types of cells formed during embryogenesis. In vitro clonal analyses show that vertebrate cells can autonomously maintain lineage commitments to single fates and that terminal development may include an invariant sequence of cell divisions. In addition, in vivo studies with Xenopus led to the proposal that clonal restrictions to spatial 'compartmental' domains arise during early development, analogous to what is observed in insects. In the zebrafish, individual gastrula cells generate clones of progeny that are confined within single tissues, but spatial restrictions have not been described. We now have examined the in vivo terminal cell lineages of zebrafish axial muscles. We obtained no evidence either for strict developmental regulation of division pattern or for spatial compartmentation within muscle lineages.  相似文献   

3.
Pluripotency of spermatogonial stem cells from adult mouse testis   总被引:2,自引:0,他引:2  
Guan K  Nayernia K  Maier LS  Wagner S  Dressel R  Lee JH  Nolte J  Wolf F  Li M  Engel W  Hasenfuss G 《Nature》2006,440(7088):1199-1203
Embryonic germ cells as well as germline stem cells from neonatal mouse testis are pluripotent and have differentiation potential similar to embryonic stem cells, suggesting that the germline lineage may retain the ability to generate pluripotent cells. However, until now there has been no evidence for the pluripotency and plasticity of adult spermatogonial stem cells (SSCs), which are responsible for maintaining spermatogenesis throughout life in the male. Here we show the isolation of SSCs from adult mouse testis using genetic selection, with a success rate of 27%. These isolated SSCs respond to culture conditions and acquire embryonic stem cell properties. We name these cells multipotent adult germline stem cells (maGSCs). They are able to spontaneously differentiate into derivatives of the three embryonic germ layers in vitro and generate teratomas in immunodeficient mice. When injected into an early blastocyst, SSCs contribute to the development of various organs and show germline transmission. Thus, the capacity to form multipotent cells persists in adult mouse testis. Establishment of human maGSCs from testicular biopsies may allow individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells. Furthermore, these cells may provide new opportunities to study genetic diseases in various cell lineages.  相似文献   

4.
5.
Hoskin CJ  Higgie M  McDonald KR  Moritz C 《Nature》2005,437(7063):1353-1356
Allopatric speciation results from geographic isolation between populations. In the absence of gene flow, reproductive isolation arises gradually and incidentally as a result of mutation, genetic drift and the indirect effects of natural selection driving local adaptation. In contrast, speciation by reinforcement is driven directly by natural selection against maladaptive hybridization. This gives individuals that choose the traits of their own lineage greater fitness, potentially leading to rapid speciation between the lineages. Reinforcing natural selection on a population of one of the lineages in a mosaic contact zone could also result in divergence of the population from the allopatric range of its own lineage outside the zone. Here we test this with molecular data, experimental crosses, field measurements and mate choice experiments in a mosaic contact zone between two lineages of a rainforest frog. We show that reinforcing natural selection has resulted in significant premating isolation of a population in the contact zone not only from the other lineage but also, incidentally, from the closely related main range of its own lineage. Thus we show the potential for reinforcement to drive rapid allopatric speciation.  相似文献   

6.
Geijsen N  Horoschak M  Kim K  Gribnau J  Eggan K  Daley GQ 《Nature》2004,427(6970):148-154
Egg and sperm cells (gametes) of the mouse are derived from a founder population of primordial germ cells that are set aside early in embryogenesis. Primordial germ cells arise from the proximal epiblast, a region of the early mouse embryo that also contributes to the first blood lineages of the embryonic yolk sac. Embryonic stem cells differentiate in vitro into cystic structures called embryoid bodies consisting of tissue lineages typical of the early mouse embryo. Because embryoid bodies sustain blood development, we reasoned that they might also support primordial germ cell formation. Here we isolate primordial germ cells from embryoid bodies, and derive continuously growing lines of embryonic germ cells. Embryonic germ cells show erasure of the methylation markers (imprints) of the Igf2r and H19 genes, a property characteristic of the germ lineage. We show that embryoid bodies support maturation of the primordial germ cells into haploid male gametes, which when injected into oocytes restore the somatic diploid chromosome complement and develop into blastocysts. Our ability to derive germ cells from embryonic stem cells provides an accessible in vitro model system for studies of germline epigenetic modification and mammalian gametogenesis.  相似文献   

7.
The retinoblastoma (Rb) gene was the first tumour suppressor identified. Inactivation of Rb in mice results in unscheduled cell proliferation, apoptosis and widespread developmental defects, leading to embryonic death by day 14.5 (refs 2-4). However, the actual cause of the embryonic lethality has not been fully investigated. Here we show that loss of Rb leads to excessive proliferation of trophoblast cells and a severe disruption of the normal labyrinth architecture in the placenta. This is accompanied by a decrease in vascularization and a reduction in placental transport function. We used two complementary techniques-tetraploid aggregation and conditional knockout strategies-to demonstrate that Rb-deficient embryos supplied with a wild-type placenta can be carried to term, but die soon after birth. Most of the neurological and erythroid abnormalities thought to be responsible for the embryonic lethality of Rb-null animals were virtually absent in rescued Rb-null pups. These findings identify and define a key function of Rb in extra-embryonic cell lineages that is required for embryonic development and viability, and provide a mechanism for the cell autonomous versus non-cell autonomous roles of Rb in development.  相似文献   

8.
9.
B Goldstein 《Nature》1992,357(6375):255-257
Two types of developmental events can cause an embryonic cell to adopt a fate different from that of its neighbours: during a cell division particular contents may be segregated to only one daughter cell and cells may experience different external cues, commonly in the form of inductive cell interactions. Work on development in the nematode Caenorhabditis elegans suggests that most cell fates are specified without a need for cell interactions. In particular, the gut cell lineage of C. elegans has been used as a primary example of specification by differential segregation of determinants. Here I re-examine the role of induction in gut specification by isolating early blastomeres. In C. elegans, the gut derives from all the progeny of a single blastomere (E) of the eight-cell stage. When a gut precursor cell (EMS) is isolated during the first half of the four-cell stage, gut does not differentiate. Gut differentiation is rescued by recombining EMS with its posterior neighbour (P2), but not by recombining EMS with one or both of the other two cells of the four-cell stage. These results demonstrate that P2 induces EMS to form gut in C. elegans.  相似文献   

10.
11.
Origin of GABAergic neurons in the human neocortex   总被引:38,自引:0,他引:38  
Letinic K  Zoncu R  Rakic P 《Nature》2002,417(6889):645-649
  相似文献   

12.
13.
The Notch signalling pathway plays a crucial role in specifying cellular fates in metazoan development by regulating communication between adjacent cells. Correlative studies suggested an involvement of Notch in intestinal development. Here, by modulating Notch activity in the mouse intestine, we directly implicate Notch signals in intestinal cell lineage specification. We also show that Notch activation is capable of amplifying the intestinal progenitor pool while inhibiting cell differentiation. We conclude that Notch activity is required for the maintenance of proliferating crypt cells in the intestinal epithelium.  相似文献   

14.
A mutation that changes cell movement and cell fate in the zebrafish embryo   总被引:13,自引:0,他引:13  
C B Kimmel  D A Kane  C Walker  R M Warga  M B Rothman 《Nature》1989,337(6205):358-362
The study of developmental patterning has been facilitated by the availability of mutations that produce changes in cell fate, in animals such as Caenorhabditis elegans and Drosophila melanogaster. We now describe a zygotic lethal mutation in the zebrafish, Brachydanio rerio, that also changes how particular embryonic cells develop. Severe pattern deficiencies are observed that are restricted to a single body region, the trunk. The mutation may directly affect mesoderm, as somites do not form in the trunk. Head and tail structures, including tail somites, are relatively undisturbed. The earliest detected expression of the mutation is during gastrulation, when movements of mesodermal cells occur incorrectly. We injected prospective trunk mesodermal cells with lineage tracer dye and observed that in mutants these cells may enter a new body region, the tail, and there may express a new fate appropriate for the changed position.  相似文献   

15.
Phosphatized and three-dimensionally preserved embryos and spherical fossils of metazoan recovered from the Kuanchuanpu Member, Dengying Formation in southern Shaanxi, China provide nice devel- opmental sequence for the studies of origination, taxonomy, phylogenic evolution and developmental biology of early animals. Ontogeny of these larva fossils has not been systemically studied mainly due to their poor preservation and limited identification. The Kuanchuanpu Member, predominated by phosphorites and cherts, yields phosphatized animal embryos, particularly those of Olivooides and Punctatus which have high resolution in fine structures and different ontogeny developmental stages. An ontogenetic sequence of the Punctatus is established mainly base on its developmental transitions from body part to oral one, which is perfectly consistent with the embryonic ontogeny sequence pro- posed by Bengtson and Yue (1997). Furthermore, a new genus Quadrapyrgites gen. nov is erected to receive a larva with tetraradial body plan.  相似文献   

16.
Gros J  Manceau M  Thomé V  Marcelle C 《Nature》2005,435(7044):954-958
In the embryo and in the adult, skeletal muscle growth is dependent on the proliferation and the differentiation of muscle progenitors present within muscle masses. Despite the importance of these progenitors, their embryonic origin is unclear. Here we use electroporation of green fluorescent protein in chick somites, video confocal microscopy analysis of cell movements, and quail-chick grafting experiments to show that the dorsal compartment of the somite, the dermomyotome, is the origin of a population of muscle progenitors that contribute to the growth of trunk muscles during embryonic and fetal life. Furthermore, long-term lineage analyses indicate that satellite cells, which are known progenitors of adult skeletal muscles, derive from the same dermomyotome cell population. We conclude that embryonic muscle progenitors and satellite cells share a common origin that can be traced back to the dermomyotome.  相似文献   

17.
Hox genes in brachiopods and priapulids and protostome evolution.   总被引:39,自引:0,他引:39  
Understanding the early evolution of animal body plans requires knowledge both of metazoan phylogeny and of the genetic and developmental changes involved in the emergence of particular forms. Recent 18S ribosomal RNA phylogenies suggest a three-branched tree for the Bilateria comprising the deuterostomes and two great protostome clades, the lophotrochozoans and ecdysozoans. Here, we show that the complement of Hox genes in critical protostome phyla reflects these phylogenetic relationships and reveals the early evolution of developmental regulatory potential in bilaterians. We have identified Hox genes that are shared by subsets of protostome phyla. These include a diverged pair of posterior (Abdominal-B-like) genes in both a brachiopod and a polychaete annelid, which supports the lophotrochozoan assemblage, and a distinct posterior Hox gene shared by a priapulid, a nematode and the arthropods, which supports the ecdysozoan clade. The ancestors of each of these two major protostome lineages had a minimum of eight to ten Hox genes. The major period of Hox gene expansion and diversification thus occurred before the radiation of each of the three great bilaterian clades.  相似文献   

18.
Choanoflagellates are the closest known relatives of metazoans. To discover potential molecular mechanisms underlying the evolution of metazoan multicellularity, we sequenced and analysed the genome of the unicellular choanoflagellate Monosiga brevicollis. The genome contains approximately 9,200 intron-rich genes, including a number that encode cell adhesion and signalling protein domains that are otherwise restricted to metazoans. Here we show that the physical linkages among protein domains often differ between M. brevicollis and metazoans, suggesting that abundant domain shuffling followed the separation of the choanoflagellate and metazoan lineages. The completion of the M. brevicollis genome allows us to reconstruct with increasing resolution the genomic changes that accompanied the origin of metazoans.  相似文献   

19.
Cell lineage-specific undermethylation of mouse repetitive DNA   总被引:7,自引:0,他引:7  
V Chapman  L Forrester  J Sanford  N Hastie  J Rossant 《Nature》1984,307(5948):284-286
Several distinct cell lineages are established during mouse embryogenesis. The trophectoderm and primitive endoderm give rise to extraembryonic structures alone, while the primitive ectoderm becomes the fetus proper. Recent studies suggest that the levels of DNA modification are lower in inactive X chromosomes from extraembryonic tissues than in embryonic and adult somatic tissues. Using HpaII/MspI isoschizomers, Southern blots and cloned probes, we show here that repetitive DNA sequences from all derivatives of the two extraembryonic lineages, trophectoderm and primitive endoderm, are substantially undermethylated compared with primitive ectoderm derivatives. This contrasts with the highly methylated state of these repetitive elements observed in adult somatic tissues. Specific demethylation or inhibition of de novo methylation, or a combination of both mechanisms, may be involved. These findings suggest that elements of gene regulation dependent on DNA modification may be different in extraembryonic cell lineages.  相似文献   

20.
The primary role of cytokines in haemato-lymphopoiesis is thought to be the regulation of cell growth and survival. But the instructive action of cytokines in haematopoiesis has not been well addressed. Here we show that a clonogenic common lymphoid progenitor, a bone marrow-resident cell that gives rise exclusively to lymphocytes (T, B and natural killer cells), can be redirected to the myeloid lineage by stimulation through exogenously expressed interleukin (IL)-2 and GM-CSF (granulocyte/macrophage colony-stimulating factor) receptors. Analysis of mutants of the beta-chain of the IL-2 receptor revealed that the granulocyte- and monocyte-differentiation signals are triggered by different cytoplasmic domains, showing that the signalling pathway(s) responsible for these unique developmental outcomes are separable. Finally, we show that the endogenous myelomonocytic cytokine receptors for GM-CSF and macrophage colony-stimulating factor (M-CSF) are expressed at low to moderate levels on the more primitive haematopoietic stem cells, are absent on common lymphoid progenitors, and are upregulated after myeloid lineage induction by IL-2. We conclude that cytokine signalling can regulate cell-fate decisions and propose that a critical step in lymphoid commitment is downregulation of cytokine receptors that drive myeloid cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号