首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
考虑二阶复微分方程f″+A(z)f=0解的非实零点的收敛指数与解的增长级之间的关系,其中A(z)是多项式,给出方程非零解的非实零点序列的收敛指数等于增长级的一个充分条件.  相似文献   

2.
研究了几类具有迭代级亚纯函数系数的高阶线性微分方程亚纯解的增长性和零点分布问题,当系数a0或ad对其它系数起支配作用时,得到了方程满足一定条件的亚纯解的迭代级的一些结果,所得结果推广了前人已有结果.  相似文献   

3.
研究了一类线性非齐次微分方程f″+e-zf'-e-zf=h1(z)e-z+h2(z)的复振荡问题,其中h1(z)为多项式,h2(z)为级小于1的整函数,得到这类方程的任意非零解一定具有无穷增长级和无穷的零点收敛指数。  相似文献   

4.
在方程系数A0的型起控制作用的条件下,研究了高阶非齐次线性微分方程f(k)+Ak-1(z)f(k-1)+…+A0(z)f=F(z)解的增长性,得到了上述微分方程解的增长级和零点的一些精确估计.  相似文献   

5.
在方程系数A_{0}的型起控制作用的条件下,研究了高阶非齐次线性微分方程 f^{(k)}+A_{k-1}(z)f^{(k-1)}+\\cdots+A_{0}(z)f=F(z)解的增长性,得到了上述微分方程解的增长级和零点的一些精确估计  相似文献   

6.
研究了当a为非零多项式 ,m >0为实常数 ,A(z)为有限级超越整函数且σ(A)≠ 1,F≠ 0为有限级整函数时 ,二阶线性微分方程 f″ +aemzf′ +Af =F与对应的齐次方程 f″ +aemzf′ +Af =0解的增长级和零点收敛指数 ,并进一步讨论了高阶的情况 .  相似文献   

7.
研究具有迭代级整函数系数的高阶线性微分方程解的增长性和零点问题.当存在某一系数起主导作用时,得到方程解的迭代级和迭代零点收敛指数的估计,推广了已有的结论.  相似文献   

8.
研究了m >0为实常数 ,A(z)为有限级超越整函数且σ(A)≠ 1,F≠ 0为有限级整函数时 ,方程f(k) +emzf′ +Af=F解的增长级和零点收敛指数及其对应的齐次方程f(k) +emzf′+Af=0解的增长级和不动点收敛指数  相似文献   

9.
本文着重研究了二阶线性微分方程 f″+P(z)f′+Q(z)f=0(其中P(z)、Q(z)为多项式)的解的复振荡性质,即其解的零点收敛指数与增长级的比较,得到了一些结果。同时,本文还研究了方程f″+P(z)f=0(其中P(z)为多项式,且degP=p>0)具有一非平凡解f_0使得λ(f_0)相似文献   

10.
本文着重研究了二阶线性微分方程 f″+P(z)f′+Q(z)f=0 (其中P(z)、Q(z)为多项式)的解的复振荡性质,即其解的零点收敛指数与增长级的比较,得到了一些结果。同时,本文还研究了方程f″+P(z)f=0(其中P(z)为多项式,且degP=p>0)具有一非平凡解f_0使得λ(f_0)<(p+2)/2时的特性。(其中λ(f_0)表示f_0的零点收敛指数)。  相似文献   

11.
运用微分方程复振荡理论,研究了系数是整函数的高阶微分方程解的零点分布问题,在对方程的某个系数做小的扰动的情况下,得到了方程的超越解的零点收敛指数都为无穷.  相似文献   

12.
研究了线性微分方程:f(2)+A(z)f=0(1),得到了当A(z)是超越亚纯函数时,方程(1)的任一亚纯解的零点收敛指数与A(z)的级的关系.  相似文献   

13.
研究了P(z) =-mzn+an -1zn -1+… +a0 ,m >0为实常数 ,A(z)为超越整函数时 ,方程f″ +eP(z) f′+A(z)f=F与对应齐次方程f″+eP(z) f′ +A(z)f=0的解的增长级和零点收敛指数 .  相似文献   

14.
研究了非齐次线性微分方程f^(k) Af Bf=F的复振荡问题,其中A,B为超越的,在B比A有较大增长级的条件下,得到该方程的所有亚纯解的零点收敛指数和增长级的精确估计。  相似文献   

15.
本文研究了当α为非零多项式,m>0为实常数,A为有限级超越整函数且σ(A)≠1,F(?)0为有限级整函数时,二阶线性微分方程f"+ae~(-mx)f+Af=F与对应的齐次方程f"+ae~(-mx)f+Af=0的解的增长级与零点收敛指数.  相似文献   

16.
17.
考虑二阶复线性微分方程f″+Af'+Bf=0解的增长性,其中A(z)是满足杨张极值p=q2的有穷级整函数,赋予系数B(z)适当条件,保证方程的每一个非零解是无穷级的。  相似文献   

18.
研究了齐次线性微分方程f^(k) A(z)f=0的解的零点收敛指数与A(z)的级的关系,表明方程解的零点收敛指数在一定条件下仅依赖于A(z)的性质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号