首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为了提高输出力矩较大的液压机械臂类机器人的人机物理接触安全性,本文设计了一种液压伺服被动柔顺关节,首先介绍了该关节的结构、基本工作原理及液压控制系统动力学模型,然后借助MATLAB/Simu-link工具箱建立关节系统模型并进行碰撞仿真实验,还通过模拟实验优化了相关参数.模拟结果表明,液压伺服被动柔顺关节具有良好的柔顺...  相似文献   

2.
对于YK7232A磨床液压伺服控制系统由较多的分立元件构成,可靠性较低,响应速度较慢,而且故障率较高,不便于系统维护等问题.采用了EDA设计技术,将系统中大部分的分立元件以及PID控制模块,采用逻辑重构的方式集成到体积较小的FPGA芯片中,形成具有低功耗、高集成度的液压伺服片上系统.采用Verilog-HDL语言对伺服控制系统的大部分模块进行逻辑重构.着重介绍了滤波整形模块以及增量式浮点数PID控制模块的设计,经Modelsim仿真校验达到了设计的要求.并最终设计出液压伺服控制片上系统顶层原理图.  相似文献   

3.
双三角钻臂及其液压系统的建模与参数估计   总被引:5,自引:2,他引:3  
双三角钻臂具有结构紧凑、运行平稳、凿岩无盲区等优点,被凿岩机器人所采用.为了控制钻臂,对轨迹进行跟踪和精确定位,要求建立钻臂及其液压系统的数学模型.然而,该系统十分复杂,具有非线性和快时变的特点,要建立其精确的模型很困难,也没有必要.作者从液压系统的流量方程、连续性方程和力平衡方程入手,对双三角钻臂及其液压驱动系统机理建模.在建模过程中,忽略一些对模型精度影响不大的次要因素,获得了系统的简化模型.通过对钻臂的结构和受力进行分析,导出了模型中的参数、液压缸负载力的估算公式和估算方法,为实现钻臂的轨迹跟踪和精确定位控制打下了基础.  相似文献   

4.
针对带式输送机对于胶带拉紧力的实际需要,设计了带式输送机液压伺服拉紧系统,液压拉紧系统是通过伺服阀控制不对称液压缸来实现对拉紧力的调节,并根据伺服阀控制不对称缸的原理建立了数学模型,用Matlab软件进行仿真分析。仿真结果表明,采用PID控制的带式输送机液压伺服拉紧系统具有良好的动态特性,可以获得满意的控制效果。  相似文献   

5.
本文阐述了作为板型控制基础的弯辊液压伺服控制系统的研究成果,分析了对弯辊系统的控制要求及现状。对比分析了单阀控制和双阀控制.伺服阀带宽对弯辊系统性能的影响,指出了采取液压措施大大展宽弯辊力控制系统带宽的可行性及试验结果。  相似文献   

6.
分析了基于VXI总线组建的电液伺服阀动态特性测试系统的误差来源,指出了VXI总线测试系统的高速、精确中断采集功能,提高了系统的测试精度,并减少了误差.液压测试系统的误差对于线性较好的电液伺服阀动态特性测试误差较小,对于非线性较强的阀动态特性测试误差较大,采用VXI总线系统减少了测试误差.液压系统和VXI测试系统在采用非线性检测理论下可以分析电液伺服阀的非线性,是分析研究电液伺服阀非线性的实验平台.图6,参11.  相似文献   

7.
唐辉 《科技资讯》2007,(24):51-51
随着液压传动技术的发展,液压伺服控制技术广泛应用在各种型式的工程机械上,给液压油系统的保养及维护提出了更高的要求.本文在分析液压系统内泄漏与污染的危害和原因后,对给液压系统威协最主要的两个问题进行阐述,探讨如何正确维护工程机械液压系统.  相似文献   

8.
伺服阀非线性特性建模的液压弯辊系统动态特性   总被引:10,自引:0,他引:10  
伺服阀非线性特性是影响液压系统动态性能的重要因素.通过对伺服阀非线性特性的分析,建立了相应的数学模型,并将其应用于工程实践中,建立了基于伺服阀非线性特性的液压弯辊系统的动态分析模型,利用软件MATLAB的工具箱SIMULINK实现了系统的动态仿真,得到较为满意的结果.  相似文献   

9.
液压四足机器人髋关节由伺服阀控缸系统构成,是机械腿的关键组成部分.它的控制性能直接影响着机械腿甚至机器人的运动控制精度.因为髋关节工作情况的复杂性和阀控缸系统自身的非线性,使得传统控制算法无法满足机器人运动性能指标的要求.由此,本文对液压四足机器人髋关节伺服阀控缸系统的控制方法进行了研究.首先通过对髋关节工作条件的分析完成了伺服阀控缸的数学建模,然后基于鲁棒自适应动态面的控制算法设计了伺服阀控缸系统的控制器,并从李雅普诺夫稳定判据的角度证明了系统的稳定性.最后通过Matlab与AMESim的联合仿真,对鲁棒自适应动态面与传统PID及普通动态面的控制效果做出对比,证明了所研究算法的有效性.   相似文献   

10.
针对武汉钢铁股份有限公司一热轧卷取机对中导板液压伺服控制系统改造方案,在考虑到液压缸的非对称性和负载的特殊性情况下,对即将改造的伺服系统建立伺服液压控制系统的数学模型,并对该系统进行仿真研究.仿真结果表明,所拟定的对中导板电液伺服系统参量确定合理,能够满足实际生产动态响应的要求.  相似文献   

11.
将挖掘机工作装置视为一个整体,建立了工作装置整体优化设计数学模型.以挖掘机的挖掘力为优化目标函数,以工作装置各铰点位置的几何参数为优化设计变量,基于遗传算法进行编程,并以某挖掘机工作装置为例进行优化求解.计算表明:在保证挖掘机工作区间在一个合理范围内的前提下,只需将工作装置铰点位置做少许调整,就可以使挖掘机的挖掘性能得到明显改善,铲斗和斗杆的最大挖掘力分别提高1%和5%.采用遗传算法可以快捷而有效地对挖掘机工作装置铰点位置进行优化设计,是对挖掘机性能进行优化设计的一种有效方法.  相似文献   

12.
为提高液压挖掘机器人工作装置挖掘作业轨迹规划控制精度,将挖掘机器人工作装置简化为斗杆、铲斗两关节二维机械臂进行分析.在建立逆运动学模型时,要将铲斗末端位姿空间与工作装置关节空间和油缸空间联系起来进行轨迹规划,以便在各个空间实现对挖掘机器人的控制.为提高跟踪期望轨迹精度,采用两个自适应神经模糊推理系统(ANFIS)分别学...  相似文献   

13.
为实现挖掘机作业过程自动控制,需要对铲斗位姿准确定位。建立了挖掘机工作装置运动学模型及电液控制系统模型,针对挖掘机电液控制系统的时变性与外界干扰的不确定性特点,设计了一个单神经元自适应PID控制器,并采用二次型性能指标对控制器参数进行在线优化。仿真试验表明,该控制器响应快速、平稳,对参数时变与不确定扰动具有一定鲁棒性,能有效地对挖掘机铲斗位姿进行精确控制。  相似文献   

14.
挖掘机工作装置电液伺服智能控制   总被引:1,自引:0,他引:1  
针对挖掘机工作装置电液伺服系统中存在多变量、强耦合及非线性的特点,提出了CMAC神经网络与常规控制相结合的控制方法,很好地解决了挖掘机电液伺服系统位置控制问题。仿真结果表明,该控制方法具有较高的控制精度和鲁棒性。  相似文献   

15.
针对液压挖掘机运动学和动力学建模复杂过程,以某型6 t挖掘机工作装置为研究对象,利用SimMechanics对机械结构进行快速建模,从而代替运动学模型获得挖掘机机构模型.采用Pro/E软件对液压挖掘机工作装置建立三维模型,将其导入ADAMS环境中,并对比验证作业结果.在ADAMS软件中,对挖掘机工作装置进行动力学仿真,得到液压挖掘机的工作特性曲线.仿真结果表明:理论上添加的载荷能够体现在各个驱动关节处受力变化中,相比其他阶段,在挖掘阶段关节受力矩变化影响较为复杂.  相似文献   

16.
通过三维参数化建模软件PRO/E,对某型挖掘机工作装置进行了三维建模.通过建立液压挖掘机工作装置的三维模型,并运用该软件中运动仿真模块Pro/MECHANICA对工作装置装配和机构运动仿真,从而了解了工作装置的挖掘工作范围.在对模型材料特性定义的基础上,对模型进行了静力分析,能够检验不同工况下动臂是否满足要求.通过仿真分析可知,相对于其它有限元分析工具来讲,Pro/MECHANICA软件实现了和PRO/E的无缝集成,对复杂零件建模后的分析工作更加精确.  相似文献   

17.
18.
针对YC225LC-8型液压反铲挖掘机,利用力学理论和方法对其工作装置在三种典型工况下进行受力分析.使用ANSYS对挖掘机动臂进行有限元静力强度分析,得出三种典型工况下的应力和应变云图以校核其强度.有限元分析结果显示:挖掘机动臂的静强度满足要求,其最大应力主要出现在液压缸和动臂连接的铰接点以及动臂和底座的铰接点处,这是对工作装置的强度起控制作用的一个重要因素.有限元分析结果对设计优化工作装置的具指导作用.  相似文献   

19.
针对液压挖掘机工作装置大臂常出现裂纹现象,采用3-D软件PRO/E建立了整个工作装置的实体图,在有限元软件ANSYS下对其工作过程进行了动力学分析。研究结果表明:采用不同的挖掘角对工作装置的挖掘阻力影响较大;工作装置的最大应力出现在大臂与油缸的连接处;得出了不同姿态角度下工作装置的动力响应结果及受力状况,为液压挖掘机工作装置的动态优化设计提供了依据。  相似文献   

20.
根据液压混合挖掘机动力系统的驱动结构、工作原理和负载特性,提出了其参数匹配方法.以蓄能器安装空间最小、蓄能器使用寿命最长和发动机工作点的稳定性为约束条件,从最大限度地发挥辅助驱动单元削峰填谷功能和降低系统装机功率的角度,对液压蓄能器的工作压力和体积、发动机功率、泵/马达的排量等参数的设计依据及其匹配进行分析,利用AMEsim软件建立仿真模型,以用于节能驱动系统中蓄能器的工作压力和额定体积的仿真.结果表明,进行参数匹配后,发动机的工作点切换满足稳定性的要求,且蓄能器的压力波动满足工况的要求.相对于原始驱动系统,其节能效果显著,节能比率为11.21%.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号