共查询到16条相似文献,搜索用时 78 毫秒
1.
为了克服传统VQ与GMM说话人识别的缺点,提出了一种新的FVQMM说话人识别方法。该方法综合了VQ、GMM和模糊集理论的优点。通过用模糊VQ误差尺度取代传统GMM的输出概率函数,减少了建模时对训练数据量的要求,提高了识别速度。实验结果表明该方法是有效的。 相似文献
2.
基于高斯混合模型的说话人识别系统 总被引:2,自引:0,他引:2
针对概率得分均值法出现的单个帧概率打分容易畸低的情况以及投票法因归一化而损失掉正面影响帧的打分,提出了一种引入可信度的均值方法,实验证明:该方法兼顾二者的优势的同时,在一定程度上消除了各自产生的不利影响,提高了说话人识别的精度。 相似文献
3.
与文本无关的话者识别一般采用高斯混合模型(GMM),而AdaBoost算法是用于提高各种现有学习算法精度的一种通用的优化算法.论文中讨论如何应用AdaBoostGMM算法进行说话人识别. 相似文献
4.
为了研究模糊聚类算法在高斯混合模型(GMM)参数获取方面的应用,采用模糊C均值算法(FCM)进行语音特征矢量的聚类,并结合Tabu搜索算法得到全局最优的聚类结果,进一步用EM算法得到GMM模型参数.使用TIMIT数据库中的语音进行测试,开集和闭集说话人辨认实验都表明,该方法获取的GMM参数比普通EM算法获得的GMM模型参数性能更优,能有效降低说话人辨认系统的误识率. 相似文献
5.
语音识别和说话人识别中各倒谱分量的相对重要性 总被引:37,自引:0,他引:37
采用增减特征分量的方法研究了MFCC各维倒谱分量对说话人识别和语音识别的贡献。使用DTW测度,在标准英文数字语音库上的实验表明,最有用的语音信息包含在MFCC分量C1到C12之间,最有用的说话人信息包含在MFCC分量C2到C16之间。MFCC分量C0和C1包含有负作用的说话人信息,将其作为特征会引起识别率的降低。低阶MFCC分量较高阶分量更容易受加性噪声和卷积噪声干扰。 相似文献
6.
针对说话人语音特征空间边界存在模糊性的特点,构建了一种量子神经网络识别分类器,用于说话人识别,以改善存在交叉数据的语音特征参数的分类效果。提出了一种基于人工免疫算法的量子间隔训练方法,以改善传统量子神经网络训练算法的不足。以TIMIT语音库为测试语音,与传统BP网络和基于常规梯度下降量子间隔训练算法的量子神经网络做对比实验。实验证明,算法能有效提高说话人识别系统的识别率,同时与高斯混合模型相比,具有更好的抗噪声性能。 相似文献
7.
说话人识别中特征参数提取的一种新方法 总被引:6,自引:0,他引:6
提出了一种新的说话人识别中特征参数的提取方法.在分别使用傅立叶分析和小波分析得到两组特征参数之后,进一步利用Fisher准则进行参数选取,构造了一种新的混合特征参数.在不增加训练和识别时计算量的同时,结合了傅立叶分析和小波分析两者的优点,具有更好的分类能力,实验结果显示,这种新的混合参数有效地提高了说话人的识别率,能更好地表征说话人的特征。 相似文献
8.
说话人性别识别是语音识别研究中的一个重要分支.通过说话人的语音识别作为说话人性别识别的预分类技术可以降低研究问题的复杂度,提高系统的准确率.文中首先从建立的藏语语音性别库入手,提取语音的特征参数MFCC,进而利用SVM进行训练和识别.实验结果表明:用于说话人识别的MFCC特征能有效地用于藏语说话人性别识别,且与SVM联... 相似文献
9.
为提高说话人识别系统的识别率,提出了一种提取Mel频率倒谱系数(MFCC)与差分特征组合参数的方法:先对传统的MFCC参数进行特征分量归一化处理,提升MFCC系数的噪声鲁棒性;再用高斯混合模型(GMM)构建了说话人识别系统。使用TIMIT语音库进行实验测试,并比较了不同高斯混合数的MFCC特征参数组合对识别率的影响。结果表明:使用改进的MFCC混合参数明显地提高了说话人的识别率。 相似文献
10.
论文研究了小波包变换及LPCC参数的提取,在此基础上,提取了基于小波包变换和LPCC的新参数(DWT-LPCC),并基于GMM系统进行说话人识别实验.结果表明,相对于LPCC参数,DWT-LPCC参数大大提高了噪声环境下的说话人识别率. 相似文献
11.
以高斯通用背景模型(Gaussian mixture model-universal background model,GMM-UBM)和i-vector模型为主的说话人识别算法在实际应用中取得了不错的成绩,但i-vector说话人识别模型中存在没有充分考虑通用背景(uni-versal background,UB)数... 相似文献
12.
基于修正MFCC参数汉语耳语音的话者识别 总被引:12,自引:1,他引:12
耳语音的话者识别是一个较新的研究课题,许多参数模型与正常音存在差异.例如话者识别中常见的M el倒谱系数(MFCC)应用于耳语音中就存在共振峰和听觉敏感区域定位的偏差.基于对耳语音共振峰位置、能量以及人耳对耳语音听觉模型的研究提出了修正MFCC参数MFCCM和MFCCExp-Log,并结合两种参数的特点,改进了传统隐马尔可夫模型,建立了适用于耳语音的汉语话者识别系统.通过1 600个音的话者识别实验得出采用MFCCM的正确率为88.88%;MFCCExp-Log参数为91.38%;如果采用改进隐马尔可夫模型正确率可以提高到92.31%,均高于传统参数模型.实验表明,修正MFCC参数可以作为表征耳语音特点的参数,它提高了耳语音话者识别系统的识别率. 相似文献
13.
隐马尔可夫模型(HMM)广泛应用于说话人识别系统中,主要研究了HMM与自组织人工神经网络(SONN)相结合的混合模型HMMNN,并分析构造了基于HMMNN的说话人识别的系统模型. 相似文献
14.
在说话人识别系统中,提高反映说话人个性的语音信号特征参数的有效性和实时性是问题之一.本文在使用线性预测系数倒谱(LPCC)和美尔倒谱系数(MFCC)计算特征参数的基础上利用Fisher准则,构造了一种新的混合特征参数.这种新的参数在不增加系统计算量的同时,结合了LPCC和MFCC各自的优点,具有更好地表征说话人特征的能力,并在一定程度上消除特征的信息冗余,有利于信息的实时处理. 相似文献
15.
为了有效提取语音特征,提高说话人识别的准确率,系统采用基于有限状态机的端点检测算法对原始语音做VAD处理,提出了新的特征组合参数:基于人的听觉特性的MFCC参数、基于发音生理特征的基音轮廓特征以及衍生的基音周期一阶差分、基音周期变化率,并将它们作为说话人识别系统的特征参数,建立了基于VQ的识别模型.实验表明:本文系统使用VAD,使系统的识别率提高了5%8%,较单独使用MFCC参数的说话人识别系统的识别率提高了2%3%. 相似文献
16.
针对单一声学特征无法精准高效地辨识说话人身份的问题,提出了一种基于多特征I-Vector的说话人识别算法.该算法首先采集不同的声学特征并将其构成一个高维特征向量,然后通过主成分分析法有效地剔除高维特征向量的关联,确保各种特征之间正交化,最后采用概率线性判别分析进行建模和打分,并在一定程度上降低空间维度.在TIMIT语料库上利用Kaldi进行实验,算法运行结果表明,该算法较当前流行的基于I-Vector的单一梅尔频率倒谱系数和感知线性预测系数的特征系统在等错误率上分别提高了8.18%和1.71%,在模型训练时间上分别减少了60.4%和47.5%,具有更好的识别效果和效率. 相似文献