首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文首先讨论正规矩阵为亚正定的特征;然后论述了亚正定矩阵的一般积、Kronecker积以及Hadamard积仍为亚正定的条件。定义1 设A为实方阵,对任意非零向量x,有x Ax>0;称A为亚正定的。定义2 设A∈R~(n×n),A~ΓA=AA~Γ;则称A为正规矩阵。定义3 A、B为同阶实方阵,A可逆,方程|λA-B|=0的解为B相对A的特征根,显然它们是A和B确定的。定义4 A=(α)(?)×,B=(b_i)_m×m都是实阵;则m·n阵方阵(α_(ij)·B)_(m×m)为A与B的Kronecker积,记为AB。  相似文献   

2.
<正> 1 引言 对广义特征值问题:Ax=λBx (1)其中A是n×n对称矩阵,B是n×n对称正定矩阵。当A和B是大型稀疏矩阵时,一种比较有效的方法是用Cholesky方法将B分解为 B=LL~T (2)其中L是下三角阵,按照变换, y=L~Tx (3)问题(1)变为 L~IAL~Ty=λy (4)然后对(4)应用同时迭代法(为了方便,后面称为同时送代法1):  相似文献   

3.
对于k阶正定Hermite方阵A的最大特征值λ_1,文[1]用幕矩阵的迹U_(n)=tr(A~n)得到如下估计:U_(n+1)/U_n≤λ_1≤U_n~(1/u)·本文将运用幕矩阵的特征多项式推广这一结果,文中定理1和定理2叙述了对正定Hermite方阵取得的结果;定理3和定理4就更一般的情况作了论讨。  相似文献   

4.
对于n阶半正定矩阵A,B的初等和完全对称函数,得到如下的不等式Er[(AB)m]≤Er(AmBm),hr[(AB)m]≤hr(AmBm),Er[AαB1-α]≤[Er(A)]α[Er(B)]1-α,hr[AαB1-α]≤[hr(A)]α[hr(B)]1-α.其中,m是任意正整数,0≤α≤1,Er(A),hr(A)分别为半正定矩阵A的r阶初等和完全对称函数.当A,B都是正定矩阵时,有E2r(A#B)≤Er(A)Er(B),h2r(A#B)≤hr(A)hr(B).其中,A#B=A1/2(A-1/2BA-1/2)1/2A1/2称为A与B的几何平均矩阵.  相似文献   

5.
本文论证了实n阶正定矩阵A与n阶实反对称矩阵B有det(A+B)>0,并给出若干推广.  相似文献   

6.
对于n阶半正定矩阵A ,B的初等和完全对称函数 ,得到如下的不等式 : Er[(AB) m]≤Er(AmBm) , hr[(AB) m]≤hr(AmBm) , Er[AαB1-α]≤ [Er(A) ]α[Er(B) ]1-α, hr[AαB1-α]≤ [hr(A) ]α[hr(B) ]1-α.其中 ,m是任意正整数 ,0≤α≤ 1,Er(A) ,hr(A)分别为半正定矩阵A的r阶初等和完全对称函数。当A ,B都是正定矩阵时 ,有 E2 r(A B)≤Er(A)Er(B) , h2 r(A B)≤hr(A)hr(B) .其中 ,A B =A1/ 2 (A-1/ 2 BA-1/ 2 ) 1/ 2 A1/ 2 称为A与B的几何平均矩阵  相似文献   

7.
对于n阶半正定矩阵A,B的初等和完全对称函数,得到如下的不等式,Er[(AB)^m]≤Er(A^mB^m),hr[(AB)^m]≤(A^mB^m),Er[A^aB^1-a]≤[Er(A]^a[Er(B)]^1-A,HR[A^aB^1-a]≤[hr(A)]^a[hr(B)]^1-a.其中,m是任意正整数,0≤a≤1,Er(A),hr(A)分别为半下定矩阵A的r阶初等和完全对称函数。当A,B都是正定矩阵时,有E^2r(A#B)≤Er(A)Er(B),h^2r(A#B)≤hr(A)hr(B),其中,A#B=A^1/2BA^-1/2)^1/2A^1/2称为A与B的几何平均矩阵。  相似文献   

8.
次亚正定矩阵的几个性质   总被引:3,自引:0,他引:3  
研究了次亚正定矩阵的性质和一系列充分必要条件,主要得到了2 个结论:(1) n阶次亚正定矩阵的次特征值实部为正;(2) 当JA为实正规矩阵时,A是次亚正定矩阵的充分必要条件是A 的次特征值实部为正.讨论并给出了矩阵乘积是次亚正定矩阵的充分和充要条件.  相似文献   

9.
设A为n阶实矩阵(不一定对称),若对任意非零向量X=(x1,x2…xn)T∈Rn,均有XSTAX>0,其中XST表示X的次转置[1],则称A是次正定方阵.给出了实方阵次正定性的几个充要条件.n阶实方阵是次正定的充分必要条件是(1)n阶实方阵JA正定;(2)A的次对称分量S是次正定的;(3)存在n阶可逆方阵P使PSTAP为次对角行矩阵;(4)存在n阶可逆矩阵P,使PSTSP=J.  相似文献   

10.
如果λ_1,…,λ_n是对称矩阵A的特征值,P. Tarazaga证明了|tr(A)/n-λ_i|≤[(n-1)/n(‖A‖_F~2-tr(A)~2/n)]~(1/2)对λ_i,i=1,…,n。本文中得到了一个等式成立的充分必要条件,由此给出一类特殊对称矩阵特征值的计算方法,而且证明了下面的定理:如果对称正定矩阵A仅有k个特征值大于或等于αtr(A),0<α<1,则tr(A)/‖A‖_F≥P_k(α)~(1/2),其中P_k(α)~(-1)=[1-(k-1)α]~2+(k-1)α~2,进而得到正定对称矩阵每一个特征值的上界估计。  相似文献   

11.
讨论三个问题:a.设A是n×n复矩阵,且K(A)分别是正规的、厄米特的、半正定的和反厄米特的,用简洁的方法证明A的某些性质;b.设A是复可逆矩阵,巨C_m(A)分别是正规的、厄米特的、正定的和反厄米特的,讨论A具有的性质的条件;c.设A,B均为n×n复矩阵,讨论C_m(A)=C_m(B)的必要充分条件.  相似文献   

12.
设A,B均为正规矩阵,关于正规矩阵的特征值扰动,有结论 (n∑i=1︱μτ(i)-λi︱2)(1/2)≤n(1/2)‖E‖F,其中λi,μi分别为A,B的特征值.通过新的方法证明给出特征值扰动上界的新估计,并改进了以上结论.  相似文献   

13.
设A是一个n阶的任意复矩阵且E是A的Hermite秩1扰动,即E=xx',其中x是n维的复列向量,x'是x的共轭转置向量.则A+E为矩阵A的Hermite秩1修正矩阵.基于矩阵分析理论中Hermite矩阵特征值分布的性质,研究得到了矩阵A特征值的任意Hermite秩1修正扰动的上下界限,即给出了矩阵A+E特征值的上下界限:λ_i(H(A))+l_i(x)+δ_i≤R(λ_i(A+xx'))≤λ_i(H(A))+u_i(x)+δ'_i(i=1,n),λ_i(H(A))+l_i(x)+δ_i≤R(λ_i(A+xx'))≤min{λ_i(H(A))+u_i(x),λ_(i-1)(H(A))}+δ'_i(2≤i≤n-1),且λ_(min)(-SH(A)τ)≤S(λ_i(A+xx'))≤λ_(max)(-SH(A)τ)(1≤i≤n),其中δ_i=sgn(‖SH(A)‖_2)[λ_(min)(H(A))-λ_(i-1)(H(A))-u_i(x)],δ'_i=sgn(‖SH(A)‖_2)[λ_(max)(H(A))-λ_i(H(A))-l_i(x)+‖x‖_2~2],gap_i=λ_(i-1)(A)-λ_i(A),i=2,…,n,H(A)和SH(A)分别代表矩阵A的Hermite部分和反Hermite部分,τ=(-1)~(1/2),sgn(·)代表符号函数.当A为Hermite矩阵时,上述结果退化为已有的结果λ_i(A)-‖x‖_2~2≤R(λ_i(A+xx'))≤λ_i(A)+‖x‖_2~2.  相似文献   

14.
设A为n阶实矩阵(不一定对称),若对任意非零向量X=(x1,x3…xn)^T∈R^n,均有X^STAX>0,其中X^ST表示X的次转置,则称A是次正定方阵。给出了实方阵次正定性的几个充要条件。n阶实方阵是次正定的充分必要条件是(1)n阶实方阵JA正定;(2)A的次对称分量S是次正定的;(3)存在n阶可逆方阵P使P^STAP为次对角行矩阵;(4)存在n阶可逆矩阵P,使P^STSP=J。  相似文献   

15.
差集矩阵和标准混合差集矩阵是简单而又强大的构造强度2的正交表的工具参见文献[1~3].本文利用投影矩阵正交分解给出了构造差集矩阵和标准混合差集矩阵的一种方法.让是文献[4]中定义的Kronecker和,则我们得到如下定理.定理1假定GF(p)是一个p阶Galois域,D(λp,m;p)是一个GF(p)上的λp×m矩阵.如果Ln(Ps)和L是两个正交表,且L可以写成D(λp,m;p),则D(λp,m;p)是一个差集矩阵.引理1如果D(m,r,p)是一个差集矩阵,则(p)D(m,r,p)和D(m,r,p)(p)是正交表,且m((p)D(m,r,p))τp Im且m(D(m,r,p)(p))Imτp.定理2假定Lp(s1…sj)=(c1…cj)是一个标…  相似文献   

16.
本文讨论了下列问题问题Ⅰ给定X∈R_r~(nxm),∧=diag(λ_1I_(k1)…λ_1I_(kr))且k_1+…+k_r=m,λ_1、λ_2…λ_r互异,r≤m,n.a)求A,B∈R~(n×n),使得AX=BX∧;b)求A,B∈SR~(nxn),使得AX=BX∧;c)求A,B∈R~(nxn),使得AX=BX∧,X~TBX=I_r;d)求A,B∈SR~(nxn),使得AX=BX∧,X~TBX=I_r.问题Ⅱ1)给定(?),求(?)使得2)给定(?),求(?),使得其中S_(AB(a,c))是问题Ⅰ(a),(c)的解的集合,而S_(AB(b,d))是问题Ⅰ(b)、(d)的解的集合。  相似文献   

17.
Cauchy不等式和Kantorovich不等式的推广   总被引:3,自引:0,他引:3  
设A为n×n正定Hermite阵,x为n维列向量,λ1≥λ 2≥…≥λn>0为A的特征值,得到了Cauchy不等式及Kantorovich不等式的如下推广形式:(x*A α1+α2+...+αk/k/x)k≤x*Aα1x...x*Aαkx,其中α1,α2,...αk为任意实数.(x*Aαx)β(x*A-βx)α≤/ααββ/(α+β)α+β/(λ1α+β-λnα+β)α+β/(λ1λn)αβ(λ1α-λnα)α(λ1β-λnβ)β/(x*x)α+β.其中α,β为任正数.  相似文献   

18.
探讨差序半环上矩阵的积和式,给出矩阵积和式和伴随矩阵的一些不等式,证明对于交换差序半环上的任意n阶矩阵A,均有(per(A))n≤per(A adj(A))≤n!(n!per(A))n,这里per(A)和adj(A)分别表示矩阵A的积和式和伴随矩阵.  相似文献   

19.
矩阵特征值的估计在理论和应用上都非常重要,传统估计的结果都是用圆形、卵形等区域来定位的。本文寻求一种新的方法来定位复矩阵特征值的分布范围,给出了任意n阶具有实系数特征多项式的矩阵特征值都包含在下面的椭圆形区域内β2(x-trA/n)2+α2y2≤α2β2,其中α=[(n-1)/n∑nk=1(Reλk-trA/n](1/2),β=[(n-1)/n∑nk=1(Imλk)2](1/2)。最后给出了更精确的估计区域,进一步改进了已有的一些结论。  相似文献   

20.
设A为n阶的Hermite矩阵,β是复数域上的一个n维向量,a是一个实数,B=Aββ-′a称为A的镶边矩阵.设A的特征根为λ1≥λ2≥…≥λn,B的特征根为μ1≥μ2≥…≥μn 1,文献中王松桂等人证明了A与B的特征根满足如下关系:μ1≥λ1≥μ2≥…≥λn-1≥μn≥λn≥μn 1.该文利用实数域上连续函数的性质给出了该结论的一个新的证明.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号