首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对Gatys的图像风格迁移算法做了两个方面的改进,首先提出了一种更加适用于风格迁移的卷积网络结构,相较于其他的预训练卷积神经网络模型减少了95%的参数数量,降低了22%以上算法运行时间;其次对风格迁移的风格损失函数部分做了改进,可以使一幅内容图像同时迁移多种不同的画作风格.  相似文献   

2.
近年来,基于卷积神经网络(CNN)的单幅图像超分辨率重构得到了广泛应用﹒然而,随着网络不断加深,也同时出现了参数过多、计算代价过大和难以训练等问题﹒为解决上述问题,提出一种新的深度残差密集网络(DRDN)框架并应用于单幅图像超分辨率重建﹒首先,网络通过密集连接充分利用了低分辨率图像从浅层到深层的各层特征,为超分辨率重构提供更多的低分辨率图像信息;其次,为了充分融合全局特征信息,通过残差学习的方式进行融合重构,同时为了缓解深层网络带来的训练困难等问题,网络采用多路跳步连接,使误差更加快速地传到各层网络;最后,将该方法与深度递归残差网络(DRRN)方法在公共数据集上进行了实验比较,结果表明DRDN在网络稳定性、时间效率、收敛速度和重建效果等方面都优于DRRN﹒  相似文献   

3.
病理组织图像在获取以及处理过程中,可能存在异物遮挡、设备故障等问题,从而导致图像污染或者部分信息的缺失。针对上述问题,采用基于BigGAN的预训练模型,并通过迁移学习实现了结肠组织病理学图像的重建。首先从预训练好的模型中提取潜在向量与类别标签作为先验输入,其次通过联合优化损失函数不断更新潜在向量与网络参数来对缺失图像进行重建,引导生成器分五个阶段逐步生成与原图像细节一致的重建图像。实验结果表明,利用该方法重建后的病理图像的峰值信噪比为33.42 dB、均方根误差为5.496,结构相似性为0.956 0。与其他重建方法相比,提出的方法在病理图像重建方面具有优越的性能。  相似文献   

4.
近年来,基于深度卷积神经网络的学习方法在图像降噪方面取得了前所未有的成果,通过调整网络结构和参数来获取更好的图像降噪效果已成为研究热点.降噪卷积神经网络在深度神经网络中采用残差学习方法,在提高降噪效果的同时,在一定程度上解决了盲降噪问题.其不足之处在于算法收敛时间长.该文针对降噪卷积神经网络结构做了进一步的改进,提出了一种基于反卷积降噪神经网络的图像降噪算法.该文工作的主要特色如下:1) 在原有的网络结构中,引入反卷积神经网络,优化了残差学习方式;2) 提出一种新的损失函数计算方法.使用BSD68和SET12测试数据集对本文提出的方法进行验证,实验结果表明,该文算法的降噪性能与降噪卷积神经网络算法相比,在相同降噪效果情形下,该文算法的收敛时间缩短了120%~138%.同时,与传统的深度学习图像降噪算法比较,该文方法的降噪效果和运行效率也都有提高.  相似文献   

5.
基于全卷积神经网络迁移学习的乳腺肿块图像分割   总被引:1,自引:0,他引:1  
针对乳腺X线摄片中肿块通常会被周围致密组织所掩盖,对比度低,且其形状不规则,肿块图像分割困难的问题,设计了一种基于全卷积神经网络迁移学习的乳腺肿块图像分割方法.该方法首先对乳腺肿块图像进行数据增强,然后利用迁移学习,对设计的全卷积神经网络模型载入参数并训练分割模型,最后在训练好的模型上对待分割图像进行处理.分割结果采用区域面积重叠率、Dice相似系数、Hausdorff距离等指标进行评价分析,在公开数据集的483幅图像上的实验结果表明:提出的方法的分割效果明显优于传统分割算法.  相似文献   

6.
目的林业业务图像的识别分类有利于林业管理部门对相关事件作出合理的处置方案及指挥调度决策,从而充分发挥护林员的作用,提升森林管护的水平,达到保护森林资源和生态安全的目的。  相似文献   

7.
皮肤镜是辅助皮肤科医生诊断的有效途径,但是人工分类高度依赖医生的临床经验,并且皮肤镜图像本身的复杂性给分类提出了巨大的挑战.为了解决皮肤镜图像分类问题,基于集成学习提出了一种集成投票块的皮肤镜图像分类方法.首先,针对ISIC 2019提供的皮肤镜图像进行预处理,为了缓解数据集较少且分布不均的问题,使用生成对抗网络和旋转...  相似文献   

8.
深度学习中卷积神经网络在行为识别领域有着良好的识别效果,但是由于深度学习需要较大数据集训练模型,而现今公开数据集中危险行为识别相关方向没有大量数据集。针对危险行为识别领域样本少、无法进行深度学习训练等问题,建立了危险行为识别数据集,并采用迁移学习方法对C3D网络模型进行迁移训练。结果表明,迁移学习后C3D网络模型对危险行为识别数据集平均识别率达到了83. 2%,可以有效识别危险行为动作。  相似文献   

9.
人脸口罩穿戴识别技术可以有效监督及管控人们佩戴口罩.本文基于迁移学习理论,共享经典卷积神经网络部分参数,修改其最后几层连接层,使用8 967张图像样本集进行训练,得到了新模型;同时结合了人脸检测技术,针对检测后人脸子图像,采用图像分类方法实现了快速识别.通过迁移学习对深度网络模型开展迁移训练,解决了因为样本量少导致的准确率低等问题,新模型能够有效解决人脸口罩穿戴识别问题,使源领域知识得到了迁移.通过MATLAB编写迁移学习程序和应用仿真主程序,调用了摄像头硬件实现了真实场景应用仿真.实践证明,该研究具有较强的应用价值.  相似文献   

10.
卷积算子是卷积神经网络的核心构造块,它根据一定的感受视野,融合卷积神经网络各层与不同通道之间的信息,提取出原始图像特征.然而图像中的相邻像素往往具有相似的值,导致卷积层的输出包含大量冗余信息.为了减少冗余信息,加快模型推理速度,神经网络中会加入池化层进行信息降维.对比传统降维方法,池化本身具有平移和旋转不变性,对图像特...  相似文献   

11.
针对大数据集上学习的深度人脸模型在实践中的相关问题,提出一种通过迁移一个预训练的深度人脸模型到特定的任务来解决该问题的方案:将深度人脸模型学习的分层表示作为源模型,然后在一个小训练集上学习高层表示以得到一个特定于任务的目标模型;在公共的小数据集及采集的真实人脸数据集上的实验表明,所采用的迁移学习方法有效且高效;经验性地探索了一个重要的开放问题——深度模型不同层特征的特点及其可迁移能力,认为越底层的特征越局部、越通用,而越高层的特征则越全局、越特定,具有更好的类内不变性和类间区分性;无监督的特征可视化与有监督的人脸识别实验结果都能较好地支持上述观点.  相似文献   

12.
为解决异源图像匹配中样本量过少和成像原理不同导致成像差异的问题,提出了一种采用类内迁移学习的异源图像匹配网络(PairsNet)。该网络由特征提取子网络和匹配度量子网络两部分组成。特征提取子网络中存在4条卷积神经网络分支,其通过卷积神经网络分支提取出红外图像和可见光图像的特征。将可见光图像作为源域、红外图像作为目标域进行迁移学习,通过减小两个域中样本特征的类内最大均值差异距离,实现了源域和目标域对应图像类别上精准的样本特征分布对齐。匹配度量子网络使用2个全连接层和1个softmax层进行串联,评估出异源图像特征的匹配度。构建了红外和可见光图像数据集,进行端到端的训练和测试。结果表明:与当前使用预训练模型微调的方法相比,PairsNet的准确率提升了10.54%,可见光图像匹配网络的能力可以有效迁移到异源图像匹配网络。  相似文献   

13.
针对传统目标轮廓识别算法对图像目标轮廓识别精度较低、 效果较差的问题, 提出一种基于深度学习的二值图像目标轮廓识别算法. 首先, 选取深度学习算法中的深度卷积网络算法识别二值图像目标轮廓, 将二值图像划分为不重叠的、 大小相同的子块图像输入深度卷积网络第一层; 其次, 卷积网络中的滤波器(卷积核)采用传统神经网络算法优化的代价函数对输入子块图像实施卷积滤波, 并将卷积滤波后下采样图像发送至第二层, 第二层经过相同处理后将结果输入第三层, 第三层输出图像即为该子块目标轮廓识别结果; 最后, 所有子块识别结束后在输出层通过全连接方法将其聚类, 并输出最终二值图像目标轮廓识别结果. 实验结果表明, 该算法识别15幅二值图像目标轮廓的识别精度平均为98.75%, 信噪比平均为2.42, 识别效果较优.  相似文献   

14.
针对传统目标轮廓识别算法对图像目标轮廓识别精度较低、 效果较差的问题, 提出一种基于深度学习的二值图像目标轮廓识别算法. 首先, 选取深度学习算法中的深度卷积网络算法识别二值图像目标轮廓, 将二值图像划分为不重叠的、 大小相同的子块图像输入深度卷积网络第一层; 其次, 卷积网络中的滤波器(卷积核)采用传统神经网络算法优化的代价函数对输入子块图像实施卷积滤波, 并将卷积滤波后下采样图像发送至第二层, 第二层经过相同处理后将结果输入第三层, 第三层输出图像即为该子块目标轮廓识别结果; 最后, 所有子块识别结束后在输出层通过全连接方法将其聚类, 并输出最终二值图像目标轮廓识别结果. 实验结果表明, 该算法识别15幅二值图像目标轮廓的识别精度平均为98.75%, 信噪比平均为2.42, 识别效果较优.  相似文献   

15.
针对合成孔径雷达(synthetic aperture radar,SAR)图像样本数据有限,且不同类别间的图像区分度不高导致识别困难的问题,提出一种应用于SAR图像识别的距离度量学习方法.该方法使用CNN网络得到图像的特征分布,利用LSTM网络加强图像间的关联性,基于余弦相似距离度量方法计算图像之间的匹配度,通过注意力机制后对结果进行分类.训练过程结合小样本学习的训练方式,采取预训练的策略进行实验.实验以公开的MSTAR数据集进行SAR图像识别,结果表明该方法准确率达到99.3%,比SVM方法提升2.5%.   相似文献   

16.
17.
在棉网图像中,棉结和杂质(简称结杂)大多都混杂在聚集的纤维网中难以检出和识别.针对这一问题,提出了一种将最大类间方差法(Otsu法)与线性回归相结合的棉网图像结杂分割方法.首先对棉网图像进行预处理,然后根据Otsu法获取棉网图像与背景分开的阈值,再根据线性回归找出该阈值与结杂灰度的关系,获得结杂分割的最佳阈值,从而实现结杂的识别.  相似文献   

18.
为了提高驾驶分心识别的应用性及识别模型的可解释性,利用迁移学习方法研究构建驾驶人驾驶分心行为识别模型并采用神经网络可视化技术研究对模型进行解释.以VGG-16模型为基础,对原模型全连接层进行修改以适应驾驶分心行为识别任务,将原数据集中的10类驾驶行为按照所包含的分心类型合并为6类,采用合并后的数据集进行模型训练和验证....  相似文献   

19.
为实现玉米病害图像快速、准确识别,提出了一种基于非对称注意力机制残差网络(asymmetric convolution attention resnet,ACA-Resnet)的图像检测模型.在残差网络的基础上,通过引入非对称卷积结构减少参数量,加快模型训练速度,同时引入注意力机制,改善模型的表达能力,提高检测准确率....  相似文献   

20.
对于小样本集合的遥感影像场景分类问题,采取了一种基于迁移学习的卷积神经网络高分辨率遥感影像识别方法,通过深度卷积神经网络Inception-v4在ImageNet上训练,得到预训练模型以及相应的初始化参数,随后将小样本遥感数据按比例划分注入预训练模型当中,根据样本集合特征,不断调整网络参数以便获得最佳识别分类模型.最后将本文的方法与现有的场景分类方法进行实验对比,测得该方法在UC merced land use场景影像数据集上取得97.92%的准确率,有效提高了高分影像场景分类精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号