首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 59 毫秒
1.
基于平方根UKF的水下纯方位目标跟踪   总被引:1,自引:1,他引:1  
为了避免被动跟踪中非线性性带来的计算复杂化及跟踪精度的下降,该文将平方根无迹卡尔曼滤波(SR-UKF)算法应用到水下仅测角目标跟踪.利用协方差平方根代替协方差参加递推运算,解决了标准无迹卡尔曼滤波(UKF)算法中由于计算误差和噪声等因素有可能引起误差协方差矩阵负定而导致滤波结果发散的问题,保证了滤波算法的数值稳定性,提高了跟踪的精度和可靠性.仿真结果表明,SR-UKF非线性滤波算法应用于水下仅测角目标跟踪系统是有效的,而且滤波精度、稳定性和收敛时间明显优于扩展卡尔曼滤波(EKF)和标准UKF算法.  相似文献   

2.
多传感器远距离目标跟踪精度分析   总被引:2,自引:0,他引:2  
该文主要研究了非线性系统中多传感器远距离目标跟踪问题,提出了分布的转换坐标卡尔曼滤波算法,给出了当多传感器不在同一位置时融合中心的状态估计组合公式。  相似文献   

3.
多传感器稳健融合跟踪算法   总被引:5,自引:0,他引:5  
讨论了多传感器融合跟踪的稳健性算法.针对集中式多传感器的融合跟踪结构,采用统计方法和随机逼近方法分析了传感器最优权的选取原则,得出了传感器融合对公共测量噪声没有影响的结果.依据最优选取原则给出了两种自适应融合跟踪算法,算法能在线适应传感器性能的变化,并使融合方差最小.采用典型航路进行了算法仿真,结果验证了理论分析的合理性和工程应用有效性.  相似文献   

4.
针对无线传感器网络(WSNs)在跟踪过程中精度低,性能差等缺点,提出基于无迹卡尔曼滤波(UKF)和协方差交叉(CI)融合的分层多簇WSNs多速率跟踪算法。将传感器分成多个簇,同一簇中的传感器可以采用不同的采样和传输速率对目标的数据进行采集和传输。首先,采用UKF处理传感器节点采集的数据,生成局部估计。然后,利用CI融合算法将收集到的局部估计值形成融合估计。通过定义一个附加权重因子,为真实协方差的不确定性定义一个更严格的界限。仿真验证了方法的有效性,采用多速率分层融合估计的精度更高,效果更明显。  相似文献   

5.
多传感器在线自适应加权融合跟踪算法   总被引:6,自引:0,他引:6  
针对多传感器机动目标的跟踪问题,提出了一种多传感器在线自适应加权融合跟踪算法.该算法依据估计的各传感器的方差的变化,及时调整参与融合的各传感器的权系数,使融合系统的均方误差始终最小,从而能在线适应传感器性能改变.仿真结果表明,该算法是一种有工程应用前景的融合跟踪算法.  相似文献   

6.
为了解决传统Kalman滤波在处理非线性系统时的局限性,以及扩展Kalman滤波(EKF)在处理强非线性系统时发散性和精度较差的问题,结合动态导航系统中的目标跟踪定位问题,在不敏Kalman滤波(UKF)算法的基础上,提出了一种基于平方根UKF的动态跟踪定位算法,在递推运算过程中采用协方差矩阵的平方根代替传统算法计算过程中的协方差矩阵。MATLAB仿真结果表明,平方根UKF算法的精度比EKF提升了54.7%,比UKF提升了14.8%。所提出的算法解决了Kalman处理非线性系统的局限性以及传统EKF和UKF算法精度不高的问题,为伪卫星系统的高精度定位研究提供了有力支撑。  相似文献   

7.
基于多传感器数据融合的目标识别和跟踪   总被引:9,自引:2,他引:9  
杨杰  陆正刚  黄欣 《上海交通大学学报》1999,33(9):1107-1110,1120
基于单传感器(雷达或红外)系统存在局限性,提出了基于多传感器(雷达和红外)信号融合的目标识别和跟踪系统,它能利用不同传感器的数据互补和冗余。特征层融合能通过利用其他传感器模块提供的目标特征信号来提高目标检测概率和降低虚警概率;决策层融合能矫正因受干扰等原因而失去目标跟踪能力的传感器模块的伺服跟踪回路,并提高抗干扰性。  相似文献   

8.
针对传统的无迹卡尔曼滤波(UKF)算法不能根据场景变化而自适应调整尺度因子α的问题,提出了一种改进算法,该算法利用UKF非线性近似的预测值与真实值之间的误差来调节α,并对采样策略进行了修正.将此方法应用于目标跟踪的仿真实验表明:该算法与使用尺度因子最优经验值的UKF算法精度相当,具有很好的跟踪性能和实用性.  相似文献   

9.
运动车辆的多传感融合跟踪   总被引:1,自引:1,他引:1  
针对单一传感器可靠性低、有效探测范围小的缺点,提出了采用雷达与机器视觉融合来实现路面运动车辆跟踪的新方法.该方法采用动力学模型对车辆运动进行描述,考虑了车体运动与车轮速率、转向角之间的关系,比用线性模型更符合车辆实际行驶时的复杂运动状况.通过基于雷达量测的扩展卡尔曼滤波估计建立视觉窗口,再根据图像灰度信息自适应调整窗口中心位置及尺寸,有效地限制了后继图像处理的工作区域,提高了系统的实时性.新方法采用数据融合技术,充分利用雷达与图像传感的量测信息,改善了对机动目标的状态估计.实验证明,该方法能明显提高路面运动车辆位置和方向角的跟踪精度.  相似文献   

10.
移动卫星通信低成本多传感器融合姿态估计方法   总被引:1,自引:1,他引:1  
针对低成本移动卫星通信终端的天线姿态估计问题,提出了一种基于自适应滤波的低成本多传感器融合姿态估计方法.该方法通过融合微机械陀螺信息和加速度计重力场测量信息来得到精确的水平姿态角估计;通过融合单基线GPS高精度的航向角测量与陀螺信息保证航向角精度.在单基线GPS失锁的情况下,利用机动加速度观测对融合滤波器进行自适应控制,与标准平方根无迹卡尔曼滤波器相比,有效地克服了机动加速度影响.实验结果表明:所提出的低成本姿态估计方法在单基线GPS锁定或短时间失锁情况下,能够满足宽带移动卫星通信天线波束对准精度要求,三维姿态角误差均小于0.5°.  相似文献   

11.
对于大多数实际系统,其噪声统计特性未知,不敏卡尔曼滤波(unscented Kalman filter,UKF)算法对噪声信息不准的鲁棒性较差,导致滤波精度急剧下降,甚至滤波发散。借助鲁棒数据校正的思想,提出了一种基于Cauchy鲁棒函数的UKF改进算法。以UKF的测量先验值与其实际值的残差作为基准,采用联合权函数对噪声估计值进行实时修正,从而提高了UKF算法的精度。通过两个实例的仿真,验证该算法的有效性。  相似文献   

12.
针对Kalman滤波不能处理多传感器量测信息融合中的非线性问题,提出了一种基于粒子滤波方法的融合跟踪算法.通过对量测方程的非线性分析,利用粒子滤波器计算目标状态估计值,通过线性迭代的方式得到系统的最优估计.仿真结果表明,与采用Kalman滤波的方法相比,该算法具有更高的估计精度和更少的计算量.相比于单传感器,减少了量测信息的模糊性,提高了资源的利用率.  相似文献   

13.
在状态估计理论的实际应用中,状态向量常常包含可以预先获知的约束信息,有效地利用这些先验信息可以进一步明确状态元素之间的关系,理论上可以提高对系统的状态估计精度.针对约束滤波的已有研究成果,将其引入到多传感器系统,提出了约束系统多传感器数据融合算法.通过建立线性等式约束方程,将传统卡尔曼滤波结果投影到约束子空间,然后对局部传感器的约束滤波结果采用分布式最优加权融合,并且通过协方差匹配技术检测观测数据异常的传感器,使之不参与到数据融合中.仿真结果表明,约束系统分布式加权融合算法的有效性和可行性,并且比集中式融合算法具有更好的稳定性.  相似文献   

14.
为准确估计车辆的行驶速度, 保证汽车的安全性, 设计了基于无味卡尔曼滤波算法(UKF: Unscented Kalman Filter)的车速估计器, 并与基于卡尔曼滤波(KF: Kalman Filter)算法所建立的估计器进行了比较。两个估计器都以七自由度整车模型为研究平台, 同时在Matlab中搭建了UKF和KF的算法模型。仿真实验结果表明, 当系统输入产生突变时, UKF算法与真实值的绝对误差率始终在4%以内, 比KF算法的误差率大约降低了3%, UKF车速估计器能很好地预测车速变化的趋势, 相对于KF估计算法效果更佳。  相似文献   

15.
针对非线性系统状态估计的有效融合问题,给出了一种基于不敏Kalman滤波的多传感器数据融合算法.首先,依据单传感器的量测利用不敏Kalman滤波器得到局部状态估计值;其次,依据模糊集合理论中隶属度的性质构建反映局部状态估计结果的支持度函数和支持度矩阵,进而实现对于各局部状态估计之间蕴含冗余和互补信息的充分提取;最终,通...  相似文献   

16.
针对Kalman滤波不能处理雷达与红外传感器量测信息融合中的非线性问题,提出了一种基于粒子滤波方法的融合跟踪算法.该算法通过利用量测方程的非线性分析和粒子滤波器计算状态估计值,从而以线性迭代的方式得到系统的最优估计.仿真结果表明,与采用Kalman滤波的方法相比,该算法具有更高的估计精度,同时减小了计算量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号