首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
固体中应力产生和消除空位及非平衡晶界偏聚   总被引:4,自引:0,他引:4  
确定固体内如何产生和消除过饱和空位, 对于了解材料的许多物理过程是至关重要的, 如固态扩散、晶界偏聚和超细晶材料的晶界稳定性等. 晶界通常被认为是空位的源或阱. 但是, 在弹性应力场作用下, 晶界有何变化仍然是不清楚的. 提出了弹性范围内的压应力作用下晶界作为源会发射空位, 张应力作用时晶界作为阱会吸收空位. 这是除现在已公认的5种固体中产生和消除过饱和空位之外的第6种基本物理过程. 在此基础上, 建立了一套动力学方程, 模拟Misra等人的张应力时效实验结果, 证实了上述基本物理过程的存在.  相似文献   

2.
内耗实验发现晶界滞弹性弛豫峰,是上世纪内耗研究的重要进展之一,但是晶界弛豫的微观机制仍然不清楚.通过弹性应力引起溶质晶界偏聚或贫化实验,提出晶界滞弹性弛豫的微观机制是:弹性张应力引起晶界吸收空位,压应力引起晶界发射空位,并引起溶质的晶界偏聚或贫化.建立了晶界滞弹性弛豫平衡下的晶界结构方程和成分方程,以此为基础,建立了弛豫过程的晶界偏聚或贫化的动力学方程.  相似文献   

3.
基于微观相场动力学模型,以Ni75Al6.0V19.0合金为对象,研究了其相变过程的扩散通道取向效应及其通道形成过程中相间作用机理.研究表明:在弹性错配应力场作用下,V原子会沿着[1001方向形成扩散通道,形成沿其短轴方向生长的D022相,从而促使Al原子在相邻处也沿着相同的方向形成扩散通道,产生L12相的定向生长;应力的升高,取向效应先增强再减弱;在较大应力下,V原子的平均占位较晚达到稳定、Al原子则较早.  相似文献   

4.
天然沉积土大多处于复杂三维应力状态.建立岩土材料三维本构模型的方法(三维化方法)应满足热力学定律这一基本物理规律.本文通过引入与塑性剪应变相应的迁移应力,使基于耗散能增量函数建立的岩土材料本构模型能合理地描述偏平面的三维屈服特性.同时,给出了耗散应力空间应力张量与真实应力张量之间的关系表达式,使本构模型能在三维耗散应力空间中采用相关联的流动法则计算不同应力方向的塑性应变.其次,在热力学框架下对比分析了常见三维化方法的热力学本质,如直接引入强度准则的方法、g(θ)方法和变换应力方法等.说明了三维耗散应力空间与变换应力空间的等价性,验证了变换应力方法在热力学框架下的合理性,同时指出直接引入强度准则的方法和g(θ)方法的不合理之处.最后,通过模型预测值与试验值的比较,验证了建立的三维耗散应力空间及其等价的变换应力空间的适用性.  相似文献   

5.
采用活性粉末混凝土和聚苯乙烯材料研制了具有与天然砂岩相似孔隙分布特征和物理力学性质的孔隙体模型,通过不同孔隙率模型的SHPB冲击实验和CT扫描实验观察和分析了孔隙体中应力波的传播特性以及传播过程中内部孔隙和固体介质的变化.研究表明:1)孔隙率显著影响应力波的传播特征.相同应变率时,孔隙率越大,反射波幅越大、波峰越多、透射波幅越小;孔隙率降至5%时反射波接近于单峰;应变率越高上述现象越明显;2)孔隙体的能量耗散率WJ/W1随孔隙率增加而线性增加,WJ/W1对应变率较敏感;3)应力波传播性质和能量耗散行为的差异与孔隙的演化机制有关.孔隙率低于10%时内部机制表现为固体介质破裂或形成新孔隙,应力波能量主要被消耗形成新开裂面或新孔隙,原有孔隙变形不大.此过程中应变率对改变孔隙形状的作用不明显;孔隙率高于15%时孔隙演化机制与应变率有关,低应变率时仍以固体介质开裂或形成新孔隙为主,但新增开裂面或新孔隙的数量相对较少;高应变率时内部结构变化同时存在固体介质开裂和孔隙变形两种机制,其中孔隙变形占较大比例,应力波能量大部分被消耗于孔隙变形,表明只有在高孔隙率和高应变率条件下内部孔隙才会发生明显的变形.孔隙离心率e可以较好地刻画应力波作用下孔隙的变形.  相似文献   

6.
玻壳压制成型中残余应力的数学建模与模拟方法   总被引:1,自引:0,他引:1  
玻壳成型过程中产生的残余应力对制品质量的影响很大.在分析玻壳成型特点的基础上,建立了玻璃压制成型过程中残余应力计算的数学模型,其中材料假定为热流变简单黏弹性材料,忽略了成型中的流动应力,讨论了模型问题的平衡推论及相容性方程,并详细分析了成型中不同阶段的边界条件.模型的数值求解采用了薄层理论,并通过空间上的分层离散和时间上的有限差分来进行.所提出的模型及求解方法可以很容易地扩展到通常的玻璃压制成型过程,也可用于分析许多与玻璃压制成型相关的问题,具有较广泛的参考价值.  相似文献   

7.
超声疲劳载荷下应力强度因子的确定   总被引:1,自引:0,他引:1  
根据线弹性断裂力学基本理论,分别讨论了由位移法和能量法确定裂纹尖端应力强度因子的具体步骤;计算分析了试件在承受超声疲劳载荷(R=-1)和超声疲劳载荷叠加平均应力(R〉-1)两种情况下的应力强度因子随裂纹长度变化的关系。分析结果表明,应用能量法研究确定超声疲劳载荷下的裂纹尖端应力强度因子,具有简明和计算精度高等突出优点,并能正确描述疲劳裂纹扩展对固有振动模态影响的规律,还实验研究了钛合金的疲劳裂纹扩  相似文献   

8.
混凝土多轴应力状态下的徐变研究   总被引:1,自引:0,他引:1  
在搜集国内外有关资料的基础上,通过对混凝土在多轴应力作用下的徐变与强度关系分析,说明在多轴应力状态下不能简单地采用叠加原理。展示了新的三轴徐变量测仪器及其徐变试验成果以及2组多轴与单轴应力状态下的徐变恢复试验成果,并对试验数据进行比较分析,得到多轴应力状态下徐变恢复与应力大小以及持荷时间之间的规律,证实了多轴应力状态下的徐变恢复与已经产生的压缩徐变有密切的关系。  相似文献   

9.
应力影响细胞的形状和骨架结构并因此控制许多与组织发展有关的关键行为,因此应力作用下细胞的种种响应问题成为生物力学目前最热的研究领域,应力纤维、Rho在研究应力信号如何被细胞感受过程中占据核心地位并已成为研究者关注的重点。本文依据国内外近几年进行的细胞对应力响应的研究进展对应力、应力纤维、Rho三者的相互关系进行了综述。  相似文献   

10.
计算了颗粒强化的氧化铝/碳化硅和氧化铝/莫来石复合陶瓷的残余微应力.结果表明,这两种复合陶瓷基体中的微应力与颗粒含量成线性关系.分析了应力状态对裂纹扩展和晶界强化的影响.从微应力作用的角度计算了氧化铝/碳化硅和氧化铝/莫来石复合陶瓷基体晶界与晶粒韧性比,并进一步得到断口的穿晶断裂百分比,从而建立了这两种复合陶瓷微观结构及成分、基体微应力、穿晶断裂百分比三者的对应关系.这样根据颗粒强化复合陶瓷的微观结构、第二相含量及分布可以预测复合陶瓷的断裂特性.  相似文献   

11.
Fe基合金应力退火感生磁各向异性机理的AFM研究   总被引:1,自引:0,他引:1  
用原子力显微镜(AFM)观测不同外加张应力下540℃退火的Fe基合金薄(Fe73.5Cu1Nb3Si13.5B9)断口形貌,结合X射线衍射谱和纵向驱动巨磁阻抗效应曲线,研究Fe基合金薄带张应力退火感生横向磁各向异性场过程中的应力作用机制.建立了包裹晶粒方向优势团聚模型,揭示了包裹晶粒方向优势团聚与磁各向异性场的关系.  相似文献   

12.
金属塑性变形的主剪切带分析   总被引:3,自引:0,他引:3  
根据金属宏观塑性变形的特点,提出了塑性主剪切带的概念。并且利用这一概念详细分析了平面应力和平面应变塑性变形的特征线理论。塑性主剪切带作为金属变形的一个基本物理特征,为金属塑性变形的宏观唯象理论补充了一个新概念。  相似文献   

13.
通过CT扫描、X射线衍射和物理实验等方法获取了天然砂岩的孔隙结构参数、矿物组成和物理力学性质,研制了具有与天然砂岩相同的孔隙结构特征和基体性质、但孔隙率不同的岩石类孔隙介质的物理模型.利用孔隙介质物理模型的CT扫描图像和MIMICS构建了具有不同孔隙率的孔隙结构三维有限元模型.通过设定应力波动理论假设的条件模拟了孔隙介质SHPB冲击破坏过程,分析了波动应力作用下岩石类孔隙介质的动力学响应、应力传递模式和变形破坏机制.研究表明:利用孔隙介质三维有限元模型可以直观定量地分析应力波传播过程中岩石类介质内部孔隙和基体的应力、应变状态及变形破坏机制.一定压强和波速的应力波传播过程中,孔隙率低于15%的岩石介质内部的孔隙未发生明显变形,变形主要体现为孔隙周边基体的微塑性(剪切变形)和开裂(横向拉应变),以及孔隙周边开裂区域的相互连通.剪应力使基体单元产生微塑性,拉应力使基体单元开裂.孔隙周边基体单元的破坏及相互贯通主要是由于基体单元的横向拉应力或拉应变超过材料的极限值.模拟得到的孔隙介质的应力波传播规律、变形与破坏模式以及能量耗散性质与物理模型的实验结果相吻合.本文研究为解析岩石类孔隙介质的复杂多变动力学响应的内在机制、应力传递模式、变形破坏与致灾机理提供了参考.  相似文献   

14.
玻壳成型过程中产生的残余应力对制品质量的影响很大。在分析玻壳成型特点的基础上,建立了玻璃压制成型过程中残余应力计算的数学模型。其中材料假定为热流变简单粘弹性材料,忽略了成型中的流动应力,讨论了模型问题的平衡推论及兼容性方程,并详细分析了成型中不同阶段的边界条件。模型的数值求解采用了薄层理论,并通过空间方向上的有限元和时间上的有限差分来进行。所提出的模型及求解方法可以很容易地扩展到通常的玻璃压制成型过程,也可用于分析许多与玻璃压制成型相关的问题,具有较广泛的参考价值。  相似文献   

15.
当今高速、重载无缝焊接铁路的轨枕、路基及焊接工艺和焊接材料都有了很大的改进,但是焊接面与钢轨的方位关系,仍基本沿用的是185年前铁路在英国首次出现时的方位结构,即焊接面垂直于钢轨轴向.因此,钢轨焊缝承受的是垂向纯剪应力、横向纯剪应力和轴向纯拉应力.纯剪应力和纯拉应力均属危险应力,在高速、重载的长期运行条件下会造成断裂隐患.而且在车轮通过焊缝时难以从根本上避免列车的垂向颠簸或横向震动.为此,本文提出与钢轨横向成α角或与钢轨垂向成β角的单斜焊接面,从几何方位结构和受力状态进行解析,由此可基本消除车轮的垂向颠簸或横向震动,并能显著增加焊接面的承载能力、减少焊接面轴向纯拉和横向纯剪的能力.  相似文献   

16.
高坝泄水对环境的不利影响之一是会产生总溶解气体(TDG)过饱和,导致鱼类患气泡病甚至死亡.本文通过对紫坪铺、三峡、二滩、漫湾、大朝山、龚嘴和铜街子等工程的观测,探讨了影响高坝工程过饱和TDG生成与释放过程的主要因素.其中,消能方式、泄洪流量与泄水建筑物的布置是影响过饱和TDG生成的主要因素,发电尾水的掺混作用可有效降低坝下TDG过饱和度,而支流汇入、水深、紊动是影响TDG过饱和沿程释放的重要因素.观测结果还表明泄水期间TDG过饱和度垂向、横向分布存在规律.研究对积累高坝TDG原型观测经验,评价其对环境的影响具有重要意义,可为TDG过饱和问题的理论研究提供基础数据和参考依据.  相似文献   

17.
钝裂纹发射位错后的应力分布及有效应力强度因子   总被引:1,自引:1,他引:0  
获得了狭椭圆孔周围刃位错及其像位错应力场的解析解,在此基础上计算了Ⅰ型钝裂纹(椭圆型)在恒载荷下发射位错达到平衡后的应力分布及有效应力强度因子。结果表明,位错发射达到平衡后会形成无位错区(DFZ),除了钝裂纹顶端存在一个应力峰值外,在DFZ内存在第2个应力峰值;随着外加应力强度因子(KⅠa)或材料磨擦力τf的增大,DFZX的尺寸变小,裂尖应力峰值不断下降,而DFZ内的应力峰值以及裂尖有效应力强度因子KⅠf却不断增大,当KⅠa或τf较小时,裂尖应力峰最高;当KⅠa或τf较高时,DFZ内的应力峰最高,由于位错的屏蔽作用,屏蔽比KⅠa/KⅠf随KⅠa的升高而增大,但它随τf 的增大而下降。  相似文献   

18.
应力水平对3D C/C复合材料的弯弯疲劳损伤模式的影响   总被引:1,自引:0,他引:1  
测定了3D C/C复合材料的弯弯疲劳寿命曲线以及疲劳加载过程中的载荷-挠度回滞曲线, 通过试件实物照片和SEM疲劳断口分析, 研究了在不同应力水平下材料的损伤模式. 研究结果表明, 3D C/C复合材料的弯弯疲劳极限为203 MPa, 应力水平为静弯曲强度的92%, 远高于2D C/C复合材料. 随应力水平的提高, 材料的疲劳载荷-挠度回滞曲线由弹性滞后环向非弹性滞后环转化, 挠度显著增加. 揭示了纤维与基体界面的滑动磨损在疲劳失效中起重要的作用, 应力水平的高低控制着这种滑动磨损的程度和速度.  相似文献   

19.
激光冲击强化机理研究   总被引:15,自引:0,他引:15  
研究表明,高功率密度激光作用于材料表面时,表层材料吸收激光能量产生等离子体,它喷射爆炸时形成强烈冲击波。当材料表面覆以约束介质和吸收涂层时可大大增强冲击波强度,从而有一个强大的冲击动量作用材料表面,当冲击强度超过材料的动态屈服强度时,就在材料上造成一个塑性变形层,塑性层中存在着表面残余应力和高密度位错,这些因素的综合作用延长了材料的抗疲劳寿命。  相似文献   

20.
Ni2MnGa铁磁形状记忆材料   总被引:1,自引:0,他引:1  
铁磁形状记忆合金 (FSMA)是在一定温度范围马氏体相稳定同时又具铁磁性的一类特殊的形状记忆合金。Ni2MnGa铁磁形状记忆合金近年来成为呈现磁场驱动大应变的新型驱动材料 ,这些应变来自磁场诱发马氏体孪晶的重排 ,而不是磁场对奥氏体至马氏体相变的作用。孪晶变体的重排在宏观上呈现为正或切应变 ,一非化学计量比Ni2 MnGa单晶于室温加 0 .4T磁场能产生6 %的应变 ,Ni Mn Ga单晶在高至 15 0Hz的交变磁场仍可得到 2 .5 %的应变。本文阐述了与这种磁控形状记忆效应相关的孪晶界迁动的磁学和晶体学理论。马氏体相的大磁晶各向异性能使磁化沿c轴方向有利 ,穿过孪晶界c轴刚好转动 90度 ,同时 ,这个孪晶界也构成了约 90度的畴界。在各向异性的情况下 ,孪晶界的迁动仅有相邻孪晶变体的Zeeman能差驱动 ,μ0 ΔMis·Hi。磁场和外应力对应变的影响通过对一简单的自由能表达式取极小值来表示 ,自由能表达式包括Zeeman能、磁晶各向异性能和外应力以及在某些情况下需考虑的内部弹性能 ,模型的所有参数可通过应力 应变曲线和磁化曲线测量得到。铁磁形状记忆合金的磁场诱发应变可类比传统热弹性形状记忆效应 ,与更为人们所熟知的磁致伸缩现象不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号