共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
The role of disparity-sensitive cortical neurons in signalling the direction of self-motion 总被引:1,自引:0,他引:1
Movement of an observer through the environment generates motion on the retina. This optic flow provides information about the direction of self-motion, but only if it contains differential motion of elements at different depths. If the observer tracks a stationary object while moving in a direction different from his line of sight, the images of objects in the foreground and in the background move in opposite directions. We have found neurons in the cerebral cortex of monkeys that prefer one direction of motion when the disparity of a stimulus corresponds to foreground motion and prefer the opposite direction when the disparity corresponds to background motion. We propose that these neurons contribute a signal about the direction of self-motion. 相似文献
3.
The direction of frequency-modulated (FM) sweeps is an important temporal cue in animal and human communication. FM direction-selective neurons are found in the primary auditory cortex (A1), but their topography and the mechanisms underlying their selectivity remain largely unknown. Here we report that in the rat A1, direction selectivity is topographically ordered in parallel with characteristic frequency (CF): low CF neurons preferred upward sweeps, whereas high CF neurons preferred downward sweeps. The asymmetry of 'inhibitory sidebands', suppressive regions flanking the tonal receptive field (TRF) of the spike response, also co-varied with CF. In vivo whole-cell recordings showed that the direction selectivity already present in the synaptic inputs was enhanced by cortical synaptic inhibition, which suppressed the synaptic excitation of the non-preferred direction more than that of the preferred. The excitatory and inhibitory synaptic TRFs had identical spectral tuning, but with inhibition delayed relative to excitation. The spectral asymmetry of the synaptic TRFs co-varied with CF, as had direction selectivity and sideband asymmetry, and thus suggested a synaptic mechanism for the shaping of FM direction selectivity and its topographic ordering. 相似文献
4.
During development of the visual system, the pattern of visual inputs may have an instructive role in refining developing neural circuits. How visual inputs of specific spatiotemporal patterns shape the circuit development remains largely unknown. We report here that, in the developing Xenopus retinotectal system, the receptive field of tectal neurons can be 'trained' to become direction-sensitive within minutes after repetitive exposure of the retina to moving bars in a particular direction. The induction of direction-sensitivity depends on the speed of the moving bar, can not be induced by random visual stimuli, and is accompanied by an asymmetric modification of the tectal neuron's receptive field. Furthermore, such training-induced changes require spiking of the tectal neuron and activation of a NMDA (N-methyl-D-aspartate) subtype of glutamate receptors during training, and are attributable to an activity-induced enhancement of glutamate-mediated inputs. Thus, developing neural circuits can be modified rapidly and specifically by visual inputs of defined spatiotemporal patterns, in a manner consistent with predictions based on spike-time-dependent synaptic modification. 相似文献
5.
Activation of a C. elegans Antennapedia homologue in migrating cells controls their direction of migration. 总被引:1,自引:0,他引:1
Anterior-posterior patterning in insects, vertebrates and nematodes involves members of conserved Antennapedia-class homeobox gene clusters (HOM-C) that are thought to give specific body regions their identities. The effects of these genes on region-specific body structures have been described extensively, particularly in Drosophila, but little is known about how HOM-C genes affect the behaviours of cells that migrate into their domains of function. In Caenorhabditis elegans, the Antennapedia-like HOM-C gene mab-5 not only specifies postembryonic fates of cells in a posterior body region, but also influences the migration of mesodermal and neural cells that move through this region. Here we show that as one neuroblast migrates into this posterior region, it switches on mab-5 gene expression; mab-5 then acts as a developmental switch to control the migratory behaviour of the neuroblast descendants. HOM-C genes can therefore not only direct region-specific patterns of cell division and differentiation, but can also act within migrating cells to programme region-specific migratory behaviour. 相似文献
6.
Glycine potentiates the NMDA response in cultured mouse brain neurons 总被引:46,自引:0,他引:46
Transmitters mediating 'fast' synaptic processes in the vertebrate central nervous system are commonly placed in two separate categories that are believed to exhibit no interaction at the receptor level. The 'inhibitory transmitters' (such as glycine and GABA) are considered to act only on receptors mediating a chloride conductance increase, whereas 'excitatory transmitters' (such as L-glutamate) are considered to activate receptors mediating a cationic conductance increase. The best known excitatory receptor is that specifically activated by N-methyl-D-aspartate (NMDA) which has recently been characterized at the single channel level. The response activated by NMDA agonists is unique in that it exhibits a voltage-dependent Mg block. We report here that this response exhibits another remarkable property: it is dramatically potentiated by glycine. This potentiation is not mediated by the inhibitory strychnine-sensitive glycine receptor, and is detected at a glycine concentration as low as 10 nM. The potentiation can be observed in outside-out patches as an increase in the frequency of opening of the channels activated by NMDA agonists. Thus, in addition to its role as an inhibitory transmitter, glycine may facilitate excitatory transmission in the brain through an allosteric activation of the NMDA receptor. 相似文献
7.
WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators 总被引:2,自引:0,他引:2
Leibfried A To JP Busch W Stehling S Kehle A Demar M Kieber JJ Lohmann JU 《Nature》2005,438(7071):1172-1175
8.
Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons 总被引:43,自引:0,他引:43
Neurons in culture can have fundamentally distinct morphologies which permit their cytological identification and the recognition of their neurites as axons or dendrites. Microtubules may have a role in determining morphology by the selective stabilization of spatially distinct microtubule subsets. The plasticity of a neurite correlates inversely with the stability of its component microtubules: microtubules in growth cones are very dynamic, and in initial neurites there is continuous incorporation of labelled subunits, whereas in mature neurites, microtubules are highly stabilized. The binding of microtubule-associated proteins to the microtubules very probably contributes to this stability. Cerebellar neurons in dissociated culture initially extend exploratory neurites and, after a relatively constant interval, become polarized. Polarity becomes evident when a single neurite exceeds the others in length. These stable neurites cease to undergo the retractions and extensions characteristic of initial neurites and assume many features of axons and dendrites. We have now studied the role of the neuronal microtubule-associate protein tau in neurite polarization by selectively inhibiting tau expression by the addition of antisense oligonucleotides to the culture media. Although the extension of initial exploratory neurites occurred normally, neurite asymmetry was inhibited by the failure to elaborate an axon. 相似文献
9.
神经元突起是建立神经网络的物质基础,其生长为生长信号启动胞内信号促使神经元不断极化的过程.作为Rho GTPases的下游信号,CRMPs富集于神经系统,参与神经元的发育过程,可作为不同信号通路的共同受体后分子,通过改变细胞骨架的运动调控突起生长.其不同亚基的功能分化、不同亲和性特点显示其具有突起生长调控的分子开关特征... 相似文献
10.
11.
The p66shc adaptor protein controls oxidative stress response and life span in mammals 总被引:44,自引:0,他引:44
Migliaccio E Giorgio M Mele S Pelicci G Reboldi P Pandolfi PP Lanfrancone L Pelicci PG 《Nature》1999,402(6759):309-313
Gene mutations in invertebrates have been identified that extend life span and enhance resistance to environmental stresses such as ultraviolet light or reactive oxygen species. In mammals, the mechanisms that regulate stress response are poorly understood and no genes are known to increase individual life span. Here we report that targeted mutation of the mouse p66shc gene induces stress resistance and prolongs life span. p66shc is a splice variant of p52shc/p46shc (ref. 2), a cytoplasmic signal transducer involved in the transmission of mitogenic signals from activated receptors to Ras. We show that: (1) p66shc is serine phosphorylated upon treatment with hydrogen peroxide (H2O2) or irradiation with ultraviolet light; (2) ablation of p66shc enhances cellular resistance to apoptosis induced by H2O2 or ultraviolet light; (3) a serine-phosphorylation defective mutant of p66shc cannot restore the normal stress response in p66shc-/- cells; (4) the p53 and p21 stress response is impaired in p66shc-/- cells; (5) p66shc-/- mice have increased resistance to paraquat and a 30% increase in life span. We propose that p66shc is part of a signal transduction pathway that regulates stress apoptotic responses and life span in mammals. 相似文献
12.
13.
大鼠海马神经元neurobasal无血清的原代培养方法 总被引:1,自引:0,他引:1
目的:建立纯度和活力较高的无血清原代培养海马神经元的方法。方法:新生SD大鼠海马,用neuro-basal培养基培养,免疫荧光鉴定神经元纯度,MTT法检测其活力。结果:神经元接种12~24 h后贴壁,并长出细小突起,3 d具有典型神经元形态特征,4 d突起形成稀疏的神经纤维网络,8 d后神经元5~10个聚集成团,突起密集,生长稳定,12 d后出现细胞碎片。Tubulin荧光染色显示清晰的神经元,突起绵长且相互交织,占细胞总数的66.7%;GFAP荧光染色的细胞数量少,突起短粗,占33.7%。培养1~5 d MTT代谢率逐渐上升,6~11 d处于平台期,11 d后下降。结论:neurobasal无血清培养获得的神经元纯度大于60%,6~11 d的细胞适于细胞学实验。 相似文献
14.
15.
16.
MIMO系统由于在收发两端采用多天线,可以获得复用增益和分集增益,克服了无线信道的衰落,并提高了数据传输效率.然而,如何去权衡这两者之间的关系,是研究的重点.从简单的MIMO系统模型入手,在确定衡量其系统性能标准的基础上,研究2×2MIMO系统的3种发送策略,并对比分析其分集增益及复用增益,为MIMO系统在不同信道条件下如何权衡两者的关系提供一定的参考价值. 相似文献
17.
To make the detecting robot move on the surface of the finned tubes, a novel combined moving mechanism is developed. The combined moving mechanism is composed of sprocket wheel and drum-like small wheel installed on the chain. It can make the robot move independently in the direction parallel to the tubes and in the direction perpendicular to the tubes. This paper made a detailed discussion on the composition of the combined moving mechanism, the design method of the conjugate outline curve and the circular-arc outline curve of the drum-like small wheel that meshes with the tubes. The error of the circular-arc outline curve is also analyzed. 相似文献
18.
Optical gain in silicon nanocrystals 总被引:50,自引:0,他引:50
Adding optical functionality to a silicon microelectronic chip is one of the most challenging problems of materials research. Silicon is an indirect-bandgap semiconductor and so is an inefficient emitter of light. For this reason, integration of optically functional elements with silicon microelectronic circuitry has largely been achieved through the use of direct-bandgap compound semiconductors. For optoelectronic applications, the key device is the light source--a laser. Compound semiconductor lasers exploit low-dimensional electronic systems, such as quantum wells and quantum dots, as the active optical amplifying medium. Here we demonstrate that light amplification is possible using silicon itself, in the form of quantum dots dispersed in a silicon dioxide matrix. Net optical gain is seen in both waveguide and transmission configurations, with the material gain being of the same order as that of direct-bandgap quantum dots. We explain the observations using a model based on population inversion of radiative states associated with the Si/SiO2 interface. These findings open a route to the fabrication of a silicon laser. 相似文献
19.
Single-exciton optical gain in semiconductor nanocrystals 总被引:1,自引:0,他引:1
Klimov VI Ivanov SA Nanda J Achermann M Bezel I McGuire JA Piryatinski A 《Nature》2007,447(7143):441-446
Nanocrystal quantum dots have favourable light-emitting properties. They show photoluminescence with high quantum yields, and their emission colours depend on the nanocrystal size--owing to the quantum-confinement effect--and are therefore tunable. However, nanocrystals are difficult to use in optical amplification and lasing. Because of an almost exact balance between absorption and stimulated emission in nanoparticles excited with single electron-hole pairs (excitons), optical gain can only occur in nanocrystals that contain at least two excitons. A complication associated with this multiexcitonic nature of light amplification is fast optical-gain decay induced by non-radiative Auger recombination, a process in which one exciton recombines by transferring its energy to another. Here we demonstrate a practical approach for obtaining optical gain in the single-exciton regime that eliminates the problem of Auger decay. Specifically, we develop core/shell hetero-nanocrystals engineered in such a way as to spatially separate electrons and holes between the core and the shell (type-II heterostructures). The resulting imbalance between negative and positive charges produces a strong local electric field, which induces a giant ( approximately 100 meV or greater) transient Stark shift of the absorption spectrum with respect to the luminescence line of singly excited nanocrystals. This effect breaks the exact balance between absorption and stimulated emission, and allows us to demonstrate optical amplification due to single excitons. 相似文献
20.