首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human papillomaviruses (HPVs) have been linked to a variety of human diseases, most notably cancer of the cervix, a disease responsible for at least 200,000 deaths per year worldwide. Over 100 different types of HPV have been identified and these can be divided into two groups. Low-risk HPV types are the causative agent of benign warts. High-risk HPV types are associated with cancer. This review focuses on the role of high-risk HPV types in cervical tumorigenesis. Recent work has uncovered new cellular partners for many of the HPV early proteins and thrown light on many of the pathways and processes in which these viral proteins intervene. At the same time, structural and biochemical studies are revealing the molecular details of viral protein function. Several of these new avenues of research have the potential to lead to new approaches to the treatment and prevention of cervical cancer.  相似文献   

2.
The Marfan syndrome (MFS) is an autosomal dominant heritable disorder of connective tissue with highly variable clinical manifestations including aortic dilatation and dissection, ectopia lentis, and a range of skeletal anomalies. Mutations in the gene for fibrillin-1 (FBN1) cause MFS and other related disorders of connective tissue collectively termed type-1 fibrillinopathies. Fibrillin-1 is a main component of the 10- to 12-nm extracellular microfibrils that are important for elastogenesis, elasticity, and homeostasis of elastic fibers. Mutations in fibrillin-1 are hypothesized to exert their effects by dominant negative mechanisms, but recent work has also emphasized the potential role of proteases and disturbances in tissue homeostasis in the pathogenesis of the MFS. This article provides an overview of the clinical aspects of the MFS and current thinking on the pathogenesis of this disorder.  相似文献   

3.
γ-Hemolysins are pore-forming toxins which develop from water-soluble monomers by combining two different ‘albeit homologous’ proteins. They form oligomeric pores in both cell and model membranes by undergoing a still poorly understood conformational rearrangement in the stem region. The stem is formed by three β-strands, folded onto the core of the soluble protein and completely extended in the pore. We propose a new model to explain such a process. Seven double-cysteine mutants were developed by inserting one cysteine on the stretch that links the β-hairpin to the core of the protein and another on different positions along the β-strands. The membrane bound protein was blocked in a non-lytic state by S–S bond formation. Six mutants were oxidized as inactive intermediates, but became active after adding DTT. These results demonstrate that the stem extension can be temporarily frozen and that the β-barrel formation occurs by β-strand concerted step-by-step sliding. Received 22 October 2007; received after revision 15 November 2007; accepted 19 November 2007  相似文献   

4.
Mammalian thioredoxin reductase (TrxR) is a selenoprotein with three existing isoenzymes (TrxR1, TrxR2, and TrxR3), which is found primarily intracellularly but also in extracellular fluids. The main substrate thioredoxin (Trx) is similarly found (as Trx1 and Trx2) in various intracellular compartments, in blood plasma, and is the cell’s major disulfide reductase. Thioredoxin reductase is necessary as a NADPH-dependent reducing agent in biochemical reactions involving Trx. Genetic and environmental factors like selenium status influence the activity of TrxR. Research shows that the Trx/TrxR system plays a significant role in the physiology of the adipose tissue, in carbohydrate metabolism, insulin production and sensitivity, blood pressure regulation, inflammation, chemotactic activity of macrophages, and atherogenesis. Based on recent research, it has been reported that the modulation of the Trx/TrxR system may be considered as a new target in the management of the metabolic syndrome, insulin resistance, and type 2 diabetes, as well as in the treatment of hypertension and atherosclerosis. In this review evidence about a possible role of this system as a marker of the metabolic syndrome is reported.  相似文献   

5.
6.
7.
Protein misfolding under stressful environmental conditions cause several cellular problems owing to the disturbed cellular protein homeostasis, which may further lead to neurological disorders like Parkinson’s disease (PD), Alzheimer’s disease (AD), Amyloid lateral sclerosis and Huntington disease (HD). The presence of cellular defense mechanisms like molecular chaperones and proteasomal degradation systems prevent protein misfolding and aggregation. Molecular chaperones plays primary role in preventing protein misfolding by mediating proper native folding, unfolding and refolding of the polypeptides along with vast number of cellular functions. In past few years, the understanding of molecular chaperone mechanisms has been expanded enormously although implementation to prevent protein aggregation diseases is still deficient. We in this review evaluated major classes of molecular chaperones and their mechanisms relevant for preventing protein aggregation, specific case of α-synuclein aggregation. We also evaluate the molecular chaperone function as a novel therapeutic approach and the chaperone inhibitors or activators as small molecular drug targets.  相似文献   

8.
Peroxisomes are single-membrane-bound organelles present in virtually all eukaryotic cells. They are involved in numerous metabolic processes, both catabolic and anabolic, including β-oxidation of very long chain fatty acids, metabolism of hydrogen peroxide, plasmalogen biosynthesis and bile acid synthesis. In several genetic diseases, there is either isolated deficiency of a specific peroxisomal protein (single-protein deficiencies) or a defect in the formation of the organelle with loss of multiple peroxisomal functions (peroxisome biogenesis disorders). X-linked adrenoleukodystrophy is an example of the former, and the Zellweger spectrum of the latter. Peroxisome biogenesis disorders are inherited in an autosomal recessive manner and result from mutations in any of at least 12 PEX genes that encode peroxins. This article reviews the peroxisomal system, the clinical, biochemical and molecular aspects of peroxisomal disorders, and discusses recent scientific advances in the understanding of peroxisome biogenesis. Received 16 October 2001; received after revision 2 January 2002; accepted 3 January 2002  相似文献   

9.
Deficiency in cerebral amyloid β-protein (Aβ) clearance is implicated in the pathogenesis of the common late-onset forms of Alzheimer’s disease (AD). Accumulation of misfolded Aβ in the brain is believed to be a net result of imbalance between its production and removal. This in turn may trigger neuroinflammation, progressive synaptic loss, and ultimately cognitive decline. Clearance of cerebral Aβ is a complex process mediated by various systems and cell types, including vascular transport across the blood–brain barrier, glymphatic drainage, and engulfment and degradation by resident microglia and infiltrating innate immune cells. Recent studies have highlighted a new, unexpected role for peripheral monocytes and macrophages in restricting cerebral Aβ fibrils, and possibly soluble oligomers. In AD transgenic (ADtg) mice, monocyte ablation or inhibition of their migration into the brain exacerbated Aβ pathology, while blood enrichment with monocytes and their increased recruitment to plaque lesion sites greatly diminished Aβ burden. Profound neuroprotective effects in ADtg mice were further achieved through increased cerebral recruitment of myelomonocytes overexpressing Aβ-degrading enzymes. This review summarizes the literature on cellular and molecular mechanisms of cerebral Aβ clearance with an emphasis on the role of peripheral monocytes and macrophages in Aβ removal.  相似文献   

10.
In the past decade, the discovery and characterization of cyclin-dependent kinases (CDKs), the engine cores of the cell cycle machinery, have advanced our understanding of the cell cycle. Both positive and negative regulators of CDKs have been characterized, accelerating the important research to unravel the mechanisms of the cell cycle disease--cancer. Cancer can originate from overexpression of positive regulators, such as cyclins, or from underexpression of negative regulators, such as CDK inhibitors (CKIs). CKIs are the focus of much cancer research because they are capable of controlling cell cycle proliferation--the Holy Grail for cancer treatment. CDKs can be inactivated by several mechanisms:, (i) by association with CKIs including p16 (INK4a), p15 (INK4b), p21 (Cip1), p27 (Kip1), and p57 (Kip2), (ii) by disassociation from their cyclin regulatory unit, (iii) by dephosphorylation of a conserved threonine residue in the T-loop, and (iv) by adding inhibitory phosphate. Here we discuss what is known about each mechanism with a hope that these insights will become useful in developing strategies to eliminate cancer in the future.  相似文献   

11.
12.
Heme peroxidases and catalases are key enzymes of hydrogen peroxide metabolism and signaling. Here, the reconstruction of the molecular evolution of the peroxidase–catalase superfamily (annotated in pfam as PF00141) based on experimentally verified as well as numerous newly available genomic sequences is presented. The robust phylogenetic tree of this large enzyme superfamily was obtained from 490 full-length protein sequences. Besides already well-known families of heme b peroxidases arranged in three main structural classes, completely new (hybrid type) peroxidase families are described being located at the border of these classes as well as forming (so far missing) links between them. Hybrid-type A peroxidases represent a minor eukaryotic subfamily from Excavates, Stramenopiles and Rhizaria sharing enzymatic and structural features of ascorbate and cytochrome c peroxidases. Hybrid-type B peroxidases are shown to be spread exclusively among various fungi and evolved in parallel with peroxidases in land plants. In some ascomycetous hybrid-type B peroxidases, the peroxidase domain is fused to a carbohydrate binding (WSC) domain. Both here described hybrid-type peroxidase families represent important turning points in the complex evolution of the whole peroxidase–catalase superfamily. We present and discuss their phylogeny, sequence signatures and putative biological function.  相似文献   

13.
The inherited -hemoglobinopathies (sickle cell disease and thalassemia) are the result of a mutation in the adult () globin gene. The fetal globin chain, encoded by the globin genes, can substitute for the mutated or defective globin chain, but expression of the globin gene is developmentally inactivated prior to birth. Reinducing expression of the normal fetal globin genes is a preferred method of ameliorating sickle cell disease and the thalassemias. Stimulation of as little as 4–8% fetal globin synthesis in the bone marrow can produce >20% fetal hemoglobin in the peripheral circulation, due to enhanced survival of red blood cells containing both sickle and fetal hemoglobin, compared to those containing sickle hemoglobin alone. Butyric acid and butyrate derivatives are generally safe compounds which induce fetal hemoglobin production by stimulating the promoter of the fetal globin genes. An initial trial with the parent compound, delivered as Arginine Butyrate, has demonstrated rapid stimulation of fetal globin expression to levels that have been shown to ameliorate these conditions. Phase 1 trials of an oral butyrate derivative with a long plasma half-life have just begun. These agents now provide a specific new apporach for ameliorating these classic molecular disorders and merit further investigation in larger patient populations.  相似文献   

14.
Zusammenfassung In Blättern und Nüssen vonGinkgo biloba wurde eine Gruppe ungesättigter Fettsäuren gefunden, die in ihrer Struktur von der üblichen Anordnung der Doppelbindungen in Fettsäuren abweichen. Jede der ungewöhnlichen Säuren hat die «isolierte» Doppelbindung in 5-Position, was auf eine neuartige Biosynthese dieser Dien-, Trien- und Tetraensäuren hinweist.

This work has been supported by a research grant from the National Institutes of Health (USPHS AM-05165) and by the Hormel Foundation.  相似文献   

15.
In this paper, we address the emergence of horticultural practice, agents, spaces and institutions in the two urban settings of Lisbon and Porto, in Portugal, during the second half of the nineteenth century. We do so by following the networking activities of two players: the self-made horticulturist and entrepreneur José Marques Loureiro, who created, in Porto, a commercial horticultural establishment and founded the Journal of Practical Horticulture; and the agronomist Francisco Simões Margiochi, head of the gardens and green grounds department of the municipality, who created the first course on gardening and horticulture, and founded the Royal Horticultural Society, both in Lisbon. Their joint activities were aimed at establishing horticulture as an applied science and to cater simultaneously to an extended audience of citizens. They enable us to enrich the narratives on the emergence and development of horticulture in Europe by calling attention to the participation in circulatory extended networks of actors who are often absent from these accounts. Additionally, they allow a comparative assessment of the outcome of their actions at the national level, and to understand their results in terms consonant with recent historiographical trends on the co-construction of centres and peripheries.

Abbreviations: AML – Arquivo Municipal de Lisboa (Municipal Archive of Lisbon).; ANTT – Arquivo Nacional da Torre do Tombo (National Archives at Torre do Tombo).; AHCPL – Arquivo Histórico da Casa Pia de Lisboa (Historical Archive of the Casa Pia of Lisbon).; JHP – Jornal de Horticultura Practica (Journal of Practical Horticulture). Online at: http://www.fc.up.pt/fa/?p=nav&;f=html.fbib-Periodico-oa&;item=378; BSNHP - Boletim da Sociedade Nacional de Horticultura de Portugal (Bulletin of the National Society of Horticulture of Portugal).  相似文献   

16.
Aminoacyl-tRNA (transfer RNA) synthetases are essential components of the cellular translation machinery as they provide the ribosome with aminoacyl-tRNAs. Aminoacyl-tRNA synthesis is generally well understood. However, the mechanism of Cys-tRNACys formation in three methanogenic archaea ( Methanocaldococcus jannaschii, Methanothermobacter thermautotrophicus and Methanopyrus kandleri) is still unknown, since no recognizable gene for a canonical cysteinyl-tRNA synthetase could be identified in the genome sequences of these organisms. Here we review the different routes recently proposed for Cys-tRNACys formation and discuss its possible link with cysteine biosynthesis in these methanogenic archaea.  相似文献   

17.
18.
Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.  相似文献   

19.
Type-2 diabetes mellitus (T2DM) is a disorder that is characterized by high blood glucose concentration in the context of insulin resistance and/or relative insulin deficiency. It causes metabolic changes that lead to the damage and functional impairment of organs and tissues resulting in increased morbidity and mortality. It is this form of diabetes whose prevalence is increasing at an alarming rate due to the 'obesity epidemic', as obesity is a key risk factor in the development of insulin resistance. However, the majority of individuals who have insulin resistance do not develop diabetes due to a compensatory increase in insulin secretion in response to an increase in insulin demand. This adaptive response is sustained by an increase in both β-cell function and mass. Importantly, there is increasing evidence that the Serine/Threonine kinase mammalian target of rapamycin (mTOR) plays a key role in the regulation of β-cell mass and therefore likely plays a critical role in β-cell adaptation. Therefore, the primary focus of this review is to summarize our current understanding of the role of mTOR in stimulating pancreatic β-cell mass and thus, in the prevention of type-2 diabetes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号