首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
3.
Perlecan is essential for cartilage and cephalic development.   总被引:19,自引:0,他引:19  
Perlecan, a large, multi-domain, heparan sulfate proteoglycan originally identified in basement membrane, interacts with extracellular matrix proteins, growth factors and receptors, and influences cellular signalling. Perlecan is present in a variety of basement membranes and in other extracellular matrix structures. We have disrupted the gene encoding perlecan (Hspg2) in mice. Approximately 40% of Hspg2-/- mice died at embryonic day (E) 10.5 with defective cephalic development. The remaining Hspg2-/- mice died just after birth with skeletal dysplasia characterized by micromelia with broad and bowed long bones, narrow thorax and craniofacial abnormalities. Only 6% of Hspg2-/- mice developed both exencephaly and chondrodysplasia. Hspg2-/- cartilage showed severe disorganization of the columnar structures of chondrocytes and defective endochondral ossification. Hspg2-/- cartilage matrix contained reduced and disorganized collagen fibrils and glycosaminoglycans, suggesting that perlecan has an important role in matrix structure. In Hspg2-/- cartilage, proliferation of chondrocytes was reduced and the prehypertrophic zone was diminished. The abnormal phenotypes of the Hspg2-/- skeleton are similar to those of thanatophoric dysplasia (TD) type I, which is caused by activating mutations in FGFR3 (refs 7, 8, 9), and to those of Fgfr3 gain-of-function mice. Our findings suggest that these molecules affect similar signalling pathways.  相似文献   

4.
Cardiac defects and renal failure in mice with targeted mutations in Pkd2   总被引:13,自引:0,他引:13  
PKD2, mutations in which cause autosomal dominant polycystic kidney disease (ADPKD), encodes an integral membrane glycoprotein with similarity to calcium channel subunits. We induced two mutations in the mouse homologue Pkd2 (ref.4): an unstable allele (WS25; hereafter denoted Pkd2WS25) that can undergo homologous-recombination-based somatic rearrangement to form a null allele; and a true null mutation (WS183; hereafter denoted Pkd2-). We examined these mutations to understand the function of polycystin-2, the protein product of Pkd2, and to provide evidence that kidney and liver cyst formation associated with Pkd2 deficiency occurs by a two-hit mechanism. Pkd2-/- mice die in utero between embryonic day (E) 13.5 and parturition. They have structural defects in cardiac septation and cyst formation in maturing nephrons and pancreatic ducts. Pancreatic ductal cysts also occur in adult Pkd2WS25/- mice, suggesting that this clinical manifestation of ADPKD also occurs by a two-hit mechanism. As in human ADPKD, formation of kidney cysts in adult Pkd2WS25/- mice is associated with renal failure and early death (median survival, 65 weeks versus 94 weeks for controls). Adult Pkd2+/- mice have intermediate survival in the absence of cystic disease or renal failure, providing the first indication of a deleterious effect of haploinsufficiency at Pkd2on long-term survival. Our studies advance our understanding of the function of polycystin-2 in development and our mouse models recapitulate the complex human ADPKD phenotype.  相似文献   

5.
6.
7.
The expression pattern and activity of fibroblast growth factor-8 (FGF8) in experimental assays indicate that it has important roles in limb development, but early embryonic lethality resulting from mutation of Fgf8 in the germ line of mice has prevented direct assessment of these roles. Here we report that conditional disruption of Fgf8 in the forelimb of developing mice bypasses embryonic lethality and reveals a requirement for Fgf8 in the formation of the stylopod, anterior zeugopod and autopod. Lack of Fgf8 in the apical ectodermal ridge (AER) alters expression of other Fgf genes, Shh and Bmp2.  相似文献   

8.
Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis   总被引:18,自引:0,他引:18  
Atrioventricular and semilunar valve abnormalities are common birth defects, but how cardiac valvulogenesis is directed remains largely unknown. During studies of genetic interaction between Egfr, encoding the epidermal growth factor receptor, and Ptpn11, encoding the protein-tyrosine-phosphatase Shp2, we discovered that Egfr is required for semilunar, but not atrioventricular, valve development. Although unnoticed in earlier studies, mice homozygous for the hypomorphic Egfr allele waved-2 (Egfrwa2/wa2) exhibit semilunar valve enlargement resulting from over-abundant mesenchymal cells. Egfr-/- mice (CD1 background) have similar defects. The penetrance and severity of the defects in Egfrwa2/wa2 mice are enhanced by heterozygosity for a targeted mutation of exon 2 of Ptpn11 (ref. 3). Compound (Egfrwa2/wa2:Ptpn11+/-) mutant mice also show premature lethality. Electrocardiography, echocardiography and haemodynamic analyses showed that affected mice develop aortic stenosis and regurgitation. Our results identify the Egfr and Shp2 as components of a growth-factor signalling pathway required specifically for semilunar valvulogenesis, support the hypothesis that Shp2 is required for Egfr signalling in vivo, and provide an animal model for aortic valve disease.  相似文献   

9.
Mcm4 (minichromosome maintenance-deficient 4 homolog) encodes a subunit of the MCM2-7 complex (also known as MCM2-MCM7), the replication licensing factor and presumptive replicative helicase. Here, we report that the mouse chromosome instability mutation Chaos3 (chromosome aberrations occurring spontaneously 3), isolated in a forward genetic screen, is a viable allele of Mcm4. Mcm4(Chaos3) encodes a change in an evolutionarily invariant amino acid (F345I), producing an apparently destabilized MCM4. Saccharomyces cerevisiae strains that we engineered to contain a corresponding allele (resulting in an F391I change) showed a classical minichromosome loss phenotype. Whereas homozygosity for a disrupted Mcm4 allele (Mcm4(-)) caused preimplantation lethality, Mcm(Chaos3/-) embryos died late in gestation, indicating that Mcm4(Chaos3) is hypomorphic. Mutant embryonic fibroblasts were highly susceptible to chromosome breaks induced by the DNA replication inhibitor aphidicolin. Most notably, >80% of Mcm4(Chaos3/Chaos3) females succumbed to mammary adenocarcinomas with a mean latency of 12 months. These findings suggest that hypomorphic alleles of the genes encoding the subunits of the MCM2-7 complex may increase breast cancer risk.  相似文献   

10.
Remodeling of the cytoskeleton is central to the modulation of cell shape and migration. Filamin A, encoded by the gene FLNA, is a widely expressed protein that regulates re-organization of the actin cytoskeleton by interacting with integrins, transmembrane receptor complexes and second messengers. We identified localized mutations in FLNA that conserve the reading frame and lead to a broad range of congenital malformations, affecting craniofacial structures, skeleton, brain, viscera and urogenital tract, in four X-linked human disorders: otopalatodigital syndrome types 1 (OPD1; OMIM 311300) and 2 (OPD2; OMIM 304120), frontometaphyseal dysplasia (FMD; OMIM 305620) and Melnick-Needles syndrome (MNS; OMIM 309350). Several mutations are recurrent, and all are clustered into four regions of the gene: the actin-binding domain and rod domain repeats 3, 10 and 14/15. Our findings contrast with previous observations that loss of function of FLNA is embryonic lethal in males but manifests in females as a localized neuronal migration disorder, called periventricular nodular heterotopia (PVNH; refs. 3-6). The patterns of mutation, X-chromosome inactivation and phenotypic manifestations in the newly described mutations indicate that they have gain-of-function effects, implicating filamin A in signaling pathways that mediate organogenesis in multiple systems during embryonic development.  相似文献   

11.
12.
Mouse embryos deficient in Gata3 die by 11 days post coitum (d.p.c.) from pathology of undetermined origin. We recently showed that Gata3-directed lacZ expression of a 625-kb Gata3 YAC transgene in mice mimics endogenous Gata3 expression, except in thymus and the sympathoadrenal system. As this transgene failed to overcome embryonic lethality (unpublished data and ref. 3) in Gata3-/- mice, we hypothesized that a neuroendocrine deficiency in the sympathetic nervous system (SNS) might cause embryonic lethality in these mutants. We find here that null mutation of Gata3 leads to reduced accumulation of Th (encoding tyrosine hydroxylase, Th) and Dbh (dopamine beta-hydroxylase, Dbh) mRNA, whereas several other SNS genes are unaffected. We show that Th and Dbh deficiencies lead to reduced noradrenaline in the SNS, and that noradrenaline deficiency is a proximal cause of death in mutants by feeding catechol intermediates to pregnant dams, thereby partially averting Gata3 mutation-induced lethality. These older, pharmacologically rescued mutants revealed abnormalities that previously could not be detected in untreated mutants. These late embryonic defects include renal hypoplasia and developmental defects in structures derived from cephalic neural crest cells. Thus we have shown that Gata3 has a role in the differentiation of multiple cell lineages during embryogenesis.  相似文献   

13.
Schimke immuno-osseous dysplasia (SIOD, MIM 242900) is an autosomal-recessive pleiotropic disorder with the diagnostic features of spondyloepiphyseal dysplasia, renal dysfunction and T-cell immunodeficiency. Using genome-wide linkage mapping and a positional candidate approach, we determined that mutations in SMARCAL1 (SWI/SNF2-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), are responsible for SIOD. Through analysis of data from persons with SIOD in 26 unrelated families, we observed that affected individuals from 13 of 23 families with severe disease had two alleles with nonsense, frameshift or splicing mutations, whereas affected individuals from 3 of 3 families with milder disease had a missense mutation on each allele. These observations indicate that some missense mutations allow retention of partial SMARCAL1 function and thus cause milder disease.  相似文献   

14.
The activins (dimers of betaA or betaB subunits, encoded by the genes Inhba and Inhbb, respectively) are TGF-beta superfamily members that have roles in reproduction and development. Whereas mice homozygous for the Inhba-null allele demonstrate disruption of whisker, palate and tooth development, leading to neonatal lethality, homozygous Inhbb-null mice are viable, fertile and have eye defects. To determine if these phenotypes were due to spatiotemporal expression differences of the ligands or disruption of specific ligand-receptor interactions, we replaced the region of Inhba encoding the mature protein with Inhbb, creating the allele Inhbatm2Zuk (hereafter designated InhbaBK). Although the craniofacial phenotypes of the Inhba-null mutation were rescued by the InhbaBK allele, somatic, testicular, genital and hair growth were grossly affected and influenced by the dosage and bioactivity of the allele. Thus, functional compensation within the TGF-beta superfamily can occur if the replacement gene is expressed appropriately. The novel phenotypes in these mice further illustrate the usefulness of insertion strategies for defining protein function.  相似文献   

15.
By comparing mammalian genomes, we and others have identified actively transcribed Ty3/gypsy retrotransposon-derived genes with highly conserved DNA sequences and insertion sites. To elucidate the functions of evolutionarily conserved retrotransposon-derived genes in mammalian development, we produced mice that lack one of these genes, Peg10 (paternally expressed 10), which is a paternally expressed imprinted gene on mouse proximal chromosome 6. The Peg10 knockout mice showed early embryonic lethality owing to defects in the placenta. This indicates that Peg10 is critical for mouse parthenogenetic development and provides the first direct evidence of an essential role of an evolutionarily conserved retrotransposon-derived gene in mammalian development.  相似文献   

16.
Tattered (Td) is an X-linked, semi-dominant mouse mutation associated with prenatal male lethality. Heterozygous females are small and at 4-5 days of age develop patches of hyperkeratotic skin where no hair grows, resulting in a striping of the coat in adults. Craniofacial anomalies and twisted toes have also been observed in some affected females. A potential second allele of Td has also been described. The phenotype of Td is similar to that seen in heterozygous females with human X-linked dominant chondrodysplasia punctata (CDPX2, alternatively known as X-linked dominant Conradi-Hünermann-Happle syndrome) as well as another X-linked, semi-dominant mouse mutation, bare patches (Bpa). The Bpa gene has recently been identified and encodes a protein with homology to 3beta-hydroxysteroid dehydrogenases that functions in one of the later steps of cholesterol biosynthesis. CDPX2 patients display skin defects including linear or whorled atrophic and pigmentary lesions, striated hyperkeratosis, coarse lusterless hair and alopecia, cataracts and skeletal abnormalities including short stature, rhizomelic shortening of the limbs, epiphyseal stippling and craniofacial defects (MIM 302960). We have now identified the defect in Td mice as a single amino acid substitution in the delta8-delta7 sterol isomerase emopamil binding protein (Ebp; encoded by Ebp in mouse) and identified alterations in human EBP in seven unrelated CDPX2 patients.  相似文献   

17.
The autosomal recessive form of Robinow syndrome (RRS; MIM 268310) is a severe skeletal dysplasia with generalized limb bone shortening, segmental defects of the spine, brachydactyly and a dysmorphic facial appearance. We previously mapped the gene mutated in RRS to chromosome 9q22 (ref. 4), a region that overlaps the locus for autosomal dominant brachydactyly type B (refs 5,6). The recent identification of ROR2, encoding an orphan receptor tyrosine kinase, as the gene mutated in brachydactyly type B (BDB1; ref. 7) and the mesomelic dwarfing in mice homozygous for a lacZ and/or a neo insertion into Ror2 (refs 8,9) made this gene a candidate for RRS. Here we report homozygous missense mutations in both intracellular and extracellular domains of ROR2 in affected individuals from 3 unrelated consanguineous families, and a nonsense mutation that removes the tyrosine kinase domain and all subsequent 3' regions of the gene in 14 patients from 7 families from Oman. The nature of these mutations suggests that RRS is caused by loss of ROR2 activity. The identification of mutations in three distinct domains (containing Frizzled-like, kringle and tyrosine kinase motifs) indicates that these are all essential for ROR2 function.  相似文献   

18.
Retinoic acid, the active derivative of vitamin A (retinol), is a hormonal signaling molecule that acts in developing and adult tissues. The Cyp26a1 (cytochrome p450, 26) protein metabolizes retinoic acid into more polar hydroxylated and oxidized derivatives. Whether some of these derivatives are biologically active metabolites has been debated. Cyp26a1(-/-) mouse fetuses have lethal morphogenetic phenotypes mimicking those generated by excess retinoic acid administration, indicating that human CYP26A1 may be essential in controlling retinoic acid levels during development. This hypothesis suggests that the Cyp26a1(-/-) phenotype could be rescued under conditions in which embryonic retinoic acid levels are decreased. We show that Cyp26a1(-/-) mice are phenotypically rescued by heterozygous disruption of Aldh1a2 (also known as Raldh2), which encodes a retinaldehyde dehydrogenase responsible for the synthesis of retinoic acid during early embryonic development. Aldh1a2 haploinsufficiency prevents the appearance of spina bifida and rescues the development of posterior structures (sacral/caudal vertebrae, hindgut, urogenital tract), while partly preventing cervical vertebral transformations and hindbrain pattern alterations in Cyp26a1(-/-) mice. Thus, some of these double-mutant mice can reach adulthood. This study is the first report of a mutation acting as a dominant suppressor of a lethal morphogenetic mutation in mammals. We provide genetic evidence that ALDH1A2 and CYP26A1 activities concurrently establish local embryonic retinoic acid levels that must be finely tuned to allow posterior organ development and to prevent spina bifida.  相似文献   

19.
Rett syndrome (RTT) is an inherited neurodevelopmental disorder of females that occurs once in 10,000-15,000 births. Affected females develop normally for 6-18 months, but then lose voluntary movements, including speech and hand skills. Most RTT patients are heterozygous for mutations in the X-linked gene MECP2 (refs. 3-12), encoding a protein that binds to methylated sites in genomic DNA and facilitates gene silencing. Previous work with Mecp2-null embryonic stem cells indicated that MeCP2 is essential for mouse embryogenesis. Here we generate mice lacking Mecp2 using Cre-loxP technology. Both Mecp2-null mice and mice in which Mecp2 was deleted in brain showed severe neurological symptoms at approximately six weeks of age. Compensation for absence of MeCP2 in other tissues by MeCP1 (refs. 19,20) was not apparent in genetic or biochemical tests. After several months, heterozygous female mice also showed behavioral symptoms. The overlapping delay before symptom onset in humans and mice, despite their profoundly different rates of development, raises the possibility that stability of brain function, not brain development per se, is compromised by the absence of MeCP2.  相似文献   

20.
Chen T  Hevi S  Gay F  Tsujimoto N  He T  Zhang B  Ueda Y  Li E 《Nature genetics》2007,39(3):391-396
Studies have shown that DNA (cytosine-5-)-methyltransferase 1 (DNMT1) is the principal enzyme responsible for maintaining CpG methylation and is required for embryonic development and survival of somatic cells in mice. The role of DNMT1 in human cancer cells, however, remains highly controversial. Using homologous recombination, here we have generated a DNMT1 conditional allele in the human colorectal carcinoma cell line HCT116 in which several exons encoding the catalytic domain are flanked by loxP sites. Cre recombinase-mediated disruption of this allele results in hemimethylation of approximately 20% of CpG-CpG dyads in the genome, coupled with activation of the G2/M checkpoint, leading to arrest in the G2 phase of the cell cycle. Although cells gradually escape from this arrest, they show severe mitotic defects and undergo cell death either during mitosis or after arresting in a tetraploid G1 state. Our results thus show that DNMT1 is required for faithfully maintaining DNA methylation patterns in human cancer cells and is essential for their proliferation and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号