首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease of motor neurons that causes progressive muscle weakness, paralysis, and premature death. No effective therapy is available. Research in the motor neuron field continues to grow, and recent breakthroughs have demonstrated the possibility of completely achieving rescue in animal models of spinal muscular atrophy, a genetic motor neuron disease. With adeno-associated virus (AAV) vectors, gene transfer can be achieved with systemic non-invasive injection and minimal toxicity. In the context of this success, we review gene therapy approaches for ALS, considering what has been done and the possible future directions for effective application of the latest generation of vectors for clinical translation. We focus on recent developments in the areas of RNA/antisense-mediated silencing of specific ALS causative genes like superoxide dismutase-1 and other molecular pathogenetic targets, as well as the administration of neuroprotective factors with viral vectors. We argue that gene therapy offers new opportunities to open the path for clinical progress in treating ALS.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a fatal chronic neurodegenerative disease whose hallmark is proteinaceous, ubiquitinated, cytoplasmic inclusions in motor neurons and surrounding cells. Multiple mechanisms proposed as responsible for ALS pathogenesis include dysfunction of protein degradation, glutamate excitotoxicity, mitochondrial dysfunction, apoptosis, oxidative stress, and inflammation. It is therefore essential to gain a better understanding of the underlying disease etiology and search for neuroprotective agents that might delay disease onset, slow progression, prolong survival, and ultimately reduce the burden of disease. Because riluzole, the only Food and Drug Administration (FDA)-approved treatment, prolongs the ALS patient’s life by only 3 months, new therapeutic agents are urgently needed. In this review, we focus on studies of various small pharmacological compounds targeting the proposed pathogenic mechanisms of ALS and discuss their impact on disease progression.  相似文献   

3.
Five structurally and functionally different proteins, an enzyme superoxide dismutase 1 (SOD1), a TAR-DNA binding protein-43 (TDP-43), an RNA-binding protein FUS, a cofilin-binding protein C9orf72, and polypeptides generated as a result of its intronic hexanucleotide expansions, and to lesser degree actin-binding profilin-1 (PFN1), are considered to be the major drivers of amyotrophic lateral sclerosis. One of the features common to these proteins is the presence of significant levels of intrinsic disorder. The goal of this study is to consider these neurodegeneration-related proteins from the intrinsic disorder perspective. To this end, we employed a broad set of computational tools for intrinsic disorder analysis and conducted intensive literature search to gain information on the structural peculiarities of SOD1, TDP-43, FUS, C9orf72, and PFN1 and their intrinsic disorder predispositions, and the roles of intrinsic disorder in their normal and pathological functions.  相似文献   

4.
Despite indisputable progress in the molecular and genetic aspects of amyotrophic lateral sclerosis (ALS), a mechanistic comprehension of the neurodegenerative processes typical of this disorder is still missing and no effective cures to halt the progression of this pathology have yet been developed. Therefore, it seems that a substantial improvement of the outcome of ALS treatments may depend on a better understanding of the molecular mechanisms underlying neuronal pathology and survival as well as on the establishment of novel etiological therapeutic strategies. Noteworthy, a convergence of recent data from multiple studies suggests that, in cellular and animal models of ALS, a complex pathological interplay subsists between motor neurons and their non-neuronal neighbours, particularly glial cells. These observations not only have drawn attention to the physiopathological changes glial cells undergo during ALS progression, but they have moved the focus of the investigations from intrinsic defects and weakening of motor neurons to glia–neuron interactions. In this review, we summarize the growing body of evidence supporting the concept that different glial populations are critically involved in the dreadful chain of events leading to motor neuron sufferance and death in various forms of ALS. The outlined observations strongly suggest that glial cells can be the targets for novel therapeutic interventions in ALS.  相似文献   

5.
Summary Free amino acids were estimated quantitatively in the motor cortex from 3 patients with amyotrophic lateral sclerosis (ALS) and 11 control subjects. Among 7 amino acids which showed statistically significant changes, taurine was the only one which was increased constantly and most markedly in the motor cortex of all the 3 ALS cases. It was suggested that the metabolism of sulfur amino acids might be affected in comparatively early stages of ALS.Acknowledgments. The authors are grateful to Dr M. Uono, Department of Neurology, Tokyo Metropolitan Hospital of Fuchu, and Dr K. Hirayama, Department of Neurology, Brain Research Institute, School of Medicine, Chiba University, for their generous cooperation.  相似文献   

6.
Y Yoshino  H Koike  K Akai 《Experientia》1979,35(2):219-220
Free amino acids were estimated quantitatively in the motor cortex from 3 patients with amyotrophic lateral sclerosis (ALS) and 11 control subjects. Among 7 amino acids which showed statistically significant changes, taurine was the only one which was increased constantly and most markedly in the motor cortex of all the 3 ALS cases. It was suggested that the metabolism of sulfur amino acids might be affected in comparatively early stages of ALS.  相似文献   

7.
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by degeneration of upper and lower motor neurons. There are currently no clinically impactful treatments for this disorder. Death occurs 3–5 years after diagnosis, usually due to respiratory failure. ALS pathogenesis seems to involve several pathological mechanisms (i.e., oxidative stress, inflammation, and loss of the glial neurotrophic support, glutamate toxicity) with different contributions from environmental and genetic factors. This multifaceted combination highlights the concept that an effective therapeutic approach should counteract simultaneously different aspects: stem cell therapies are able to maintain or rescue motor neuron function and modulate toxicity in the central nervous system (CNS) at the same time, eventually representing the most comprehensive therapeutic approach for ALS. To achieve an effective cell-mediated therapy suitable for clinical applications, several issues must be addressed, including the identification of the most performing cell source, a feasible administration protocol, and the definition of therapeutic mechanisms. The method of cell delivery represents a major issue in developing cell-mediated approaches since the cells, to be effective, need to be spread across the CNS, targeting both lower and upper motor neurons. On the other hand, there is the need to define a strategy that could provide a whole distribution without being too invasive or burdened by side effects. Here, we review the recent advances regarding the therapeutic potential of stem cells for ALS with a focus on the minimally invasive strategies that could facilitate an extensive translation to their clinical application.  相似文献   

8.
In a total of 62 samples of cerebrospinal fluid (CSF) and an equal number of serum samples obtained from 16 patients suffering from amyotrophic lateral sclerosis, 22 patients suffering from miscellaneous neurological diseases, and 24 controls, lead was measured by atomic absorption spectrophotometry. No statistical difference in lead concentration was found between the above three groups.  相似文献   

9.
T Kumamoto  C Suematsu  Y Yata  Y Yase 《Experientia》1979,35(12):1604-1605
Nonspecific myofibrillar changes such as streaming of the Z-line, formation of rod-like structures, satellitosis, proliferation of sarcolemmal nuclei and papillary projection of the sarcolemma were recognized as a disorganization of the muscle itself. In addition, fine structural pathology in ALS specimens showed characteristically a pig-tail formation - 'Zopfformation' - which has been considered to have a neurogenic origin.  相似文献   

10.
11.
During the past decade, the identification of microRNA (miR) targets has become common laboratory practice, and various strategies are now used to detect interactions between miRs and their mRNA targets. However, the current lack of a standardized identification process often leads to incomplete and/or conflicting results. Here, we review the problems most commonly encountered when verifying miR–mRNA interactions, and we propose a workflow for future studies. To illustrate the challenges faced when validating a miR target, we discuss studies in which the regulation of brain-derived neurotrophic factor by miRs was investigated, and we highlight several controversies that emerged from these studies. Finally, we discuss the therapeutic use of miR inhibitors, and we discuss several questions that should be addressed before proceeding to preclinical testing.  相似文献   

12.
13.
Autophagy takes part in regulating the eukaryotic cells function and the progression of numerous diseases, but its clinical utility has not been fully developed yet. Recently, mounting evidences highlight an important correlation between autophagy and bone homeostasis, mediated by osteoclasts, osteocytes, bone marrow mesenchymal stem cells, and osteoblasts, and autophagy plays a vital role in the pathogenesis of glucocorticoid-induced osteoporosis (GIOP). The combinations of autophagy activators/inhibitors with anti-GIOP first-line drugs or some new autophagy-based manipulators, such as regulation of B cell lymphoma 2 family proteins and caspase-dependent clearance of autophagy-related gene proteins, are likely to be the promising approaches for GIOP clinical treatments. In view of the important role of autophagy in the pathogenesis of GIOP, here we review the potential mechanisms about the impacts of autophagy in GIOP and its association with GIOP therapy.  相似文献   

14.
15.
Cellular responses to mild heat stress   总被引:12,自引:0,他引:12  
Since its discovery in 1962 by Ritossa, the heat shock response has been extensively studied by a number of investigators to understand the molecular mechanism underlying the cellular response to heat stress. The most well characterized heat shock response is induction of the heat shock proteins that function as molecular chaperones and exert cell cycle regulatory and anti-apoptotic activities. While most investigators have focused their studies on the toxic effects of heat stress in organisms such as severe heat stress-induced cell cycle arrest and apoptosis, the cellular response to fever-ranged mild heat stress has been rather underestimated. However, the cellular response to mild heat stress is likely to be more important in a physiological sense than that to severe heat stress because the body temperature of homeothermic animals increases by only 1–2°C during febrile diseases. Here we provide information that mild heat stress does have some beneficial role in organisms via positively regulating cell proliferation and differentiation, and immune response in mammalian cells.Received 14 May 2004; received after revision 2 August 2004; accepted 16 August 2004  相似文献   

16.
Vimentin, a major constituent of the intermediate filament family of proteins, is ubiquitously expressed in normal mesenchymal cells and is known to maintain cellular integrity and provide resistance against stress. Vimentin is overexpressed in various epithelial cancers, including prostate cancer, gastrointestinal tumors, tumors of the central nervous system, breast cancer, malignant melanoma, and lung cancer. Vimentin’s overexpression in cancer correlates well with accelerated tumor growth, invasion, and poor prognosis; however, the role of vimentin in cancer progression remains obscure. In recent years, vimentin has been recognized as a marker for epithelial–mesenchymal transition (EMT). Although EMT is associated with several tumorigenic events, vimentin’s role in the underlying events mediating these processes remains unknown. By virtue of its overexpression in cancer and its association with tumor growth and metastasis, vimentin serves as an attractive potential target for cancer therapy; however, more research would be crucial to evaluate its specific role in cancer. Our recent discovery of a vimentin-binding mini-peptide has generated further impetus for vimentin-targeted tumor-specific therapy. Furthermore, research directed toward elucidating the role of vimentin in various signaling pathways would reveal new approaches for the development of therapeutic agents. This review summarizes the expression and functions of vimentin in various types of cancer and suggests some directions toward future cancer therapy utilizing vimentin as a potential molecular target.  相似文献   

17.
The recent approvals of anticancer therapeutic agents targeting the histone deacetylases and DNA methyltransferases have highlighted the important role that epigenetics plays in human diseases, and suggested that the factors controlling gene expression are novel drug targets. Protein arginine deiminase 4 (PAD4) is one such target because its effects on gene expression parallel those observed for the histone deacetylases. We demonstrated that F- and Cl-amidine, two potent PAD4 inhibitors, display micromolar cytotoxic effects towards several cancerous cell lines (HL-60, MCF7 and HT-29); no effect was observed in noncancerous lines (NIH 3T3 and HL-60 granulocytes). These compounds also induced the differentiation of HL-60 and HT29 cells. Finally, these compounds synergistically potentiated the cell killing effects of doxorubicin. Taken together, these findings suggest PAD4 inhibition as a novel epigenetic approach for the treatment of cancer, and suggest that F- and Cl-amidine are candidate therapeutic agents for this disease.  相似文献   

18.
19.
20.
Zusammenfassung An regenerierenden Süsswasserpolypen (Hydra vulgaris orientalis) wurde die Gesamtmenge der Epithelmuskelzellen, der interstitiellen Zellen und der Cnidoblasten bestimmt. Dabei wurden sehr grosse Zellverluste, speziell bei den interstitiellen Zellen, in geringerem Masse bei den Epithelmuskelzellen festgestellt. Die Zahl der Cnidoblasten nahm dagegen etwas zu.

This investigation was supported by a grant-in-aid from the Council of Scientific and Industrial Research to Dr.S. Mookerjee, Head of the Department of Zoology. I am thankful to him for suggestions and guidance, and toCSIR for the award of a research fellowship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号