首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular Gram-negative pathogenic bacteria target essential cytoplasmic processes of eukaryotic cells by using effector protein delivery systems such as the type III secretion system (T3SS). These secretion systems directly inject effector proteins into the host cell cytoplasm. Among the T3SS-dependent Yop proteins of pathogenic Yersinia, the function of the effector protein YopM remains enigmatic. In a recent study, we demonstrated that recombinant YopM from Yersinia enterocolitica enters host cells autonomously without the presence of bacteria and thus identified YopM as a novel bacterial cell-penetrating protein. Following entry YopM down-regulates expression of pro-inflammatory cytokines such as tumor necrosis factor α. These properties earmark YopM for further development as a novel anti-inflammatory therapeutic. To elucidate the uptake and intracellular targeting mechanisms of this bacterial cell-penetrating protein, we analyzed possible routes of internalization employing ultra-cryo electron microscopy. Our results reveal that under physiological conditions, YopM enters cells predominantly by exploiting endocytic pathways. Interestingly, YopM was detected free in the cytosol and inside the nucleus. We could not observe any colocalization of YopM with secretory membranes, which excludes retrograde transport as the mechanism for cytosolic release. However, our findings indicate that direct membrane penetration and/or an endosomal escape of YopM contribute to the cytosolic and nuclear localization of the protein. Surprisingly, even when endocytosis is blocked, YopM was found to be associated with endosomes. This suggests an intracellular endosome-associated transport of YopM.  相似文献   

2.
Bacterial targets and antibiotics: genome-based drug discovery   总被引:2,自引:0,他引:2  
The requirement for novel classes of antibiotics to combat the emergence of resistant and multi-resistant bacteria has coincided with the completion sequencing of a number of bacterial genomes. The in silico analysis of these genomes coupled with innovative genetic manipulation has already led to the identification of conserved essential (either in vitro or in vivo, depending on the methodology) genes that are potential targets for antibacterial research. New technologies, made possible by access to the genomic sequences, are capable of simultaneously quantifying almost the entire complement of gene products synthesised by bacterial cells. These technologies are opening up the way for the analysis of expression patterns elicited in cells in response to changes in their environment. The integration of these technologies into the drug discovery process is still in its infancy and the potential wealth of information, some of it already available, has yet to be fully realised.  相似文献   

3.
To sustain the bio-energetic demands of growth, proliferation, and effector functions, the metabolism of immune cells changes dramatically in response to immunologic stimuli. In this review, I focus on B cell metabolism, especially regarding the production of intestinal IgA antibody. Accumulating evidence has implicated not only host-derived factors (e.g., cytokines) but also gut environmental factors, including the possible involvement of commensal bacteria and diet, in the control of B cell metabolism during intestinal IgA antibody production. These findings yield new insights into the regulation of immunosurveillance and homeostasis in the gut.  相似文献   

4.
Throughout growth and development,Dictyostelium cells secrete autocrine factors that accumulate in proportion to cell density. At sufficient concentration, these factors cause changes in gene expression. VegetativeDictyostelium cells continuously secrete prestarvation factor (PSF). The bacteria upon which the cells feed inhibit their response to PSF, allowing the cells to monitor their own density in relation to that of their food supply. At high PSF/bacteria ratios, which occur during late exponential growth, PSF induces the expression of several genes whose products are needed for cell aggregation. When the food supply has been depleted, PSF production declines, and a second density-sensing pathway is activated. Starving cells secrete conditioned medium factor (CMF), a glycoprotein of Mr 80 kDa that is essential for the development of differentiated cell types. Antisense mutagenesis has shown that cells lacking CMF cannot aggregate, and preliminary data suggest that CMF regulates cAMP signal transduction. Calculations indicate that a mechanism of simultaneously secreting and recognizing a signal molecule, as used byDictyostelium to monitor cell density, could also be used to determine the total number of cells in a tissue.  相似文献   

5.
6.
Lactoferrin   总被引:4,自引:0,他引:4  
The first function attributed to lactoferrin (Lf), an iron binding protein belonging to the non-immune natural defences, was antimicrobial activity that depended on its capacity to sequester iron. Iron-independent microbicidal activities, requiring direct interaction between this cationic protein and microbial surface components, were later demonstrated. Many other anti-microbial and anti-viral functions have since been ascribed to Lf. In mucosal secretions, iron and Lf modulate the motility and aggregation of pathogenic bacteria. Lf inhibits bacterial adhesion on abiotic surfaces through ionic binding to biomaterials, or specific binding to bacterial structures or both. Lf inhibition of bacterial adhesion to host cells requires Lf binding to bacteria and/or host cells. Lf hinders microbial internalization by binding to both glycosaminoglycans and bacterial proteins which can be degraded by Lf-mediated proteolysis. Moreover, Lf internalisation and localisation to the host cell nuclei could modulate bacterial entry into cells through gene regulation. Finally, the capability of Lf to exert antiviral activity, through its binding to host cells and/or viral particles, strengthens the idea that it is an important brick in the mucosal wall, effective against both microbial and viral attacks.  相似文献   

7.
Complex diseases arise from a combination of heritable and environmental factors. The contribution made by environmental factors may be mediated through epigenetics. Epigenetics is the study of changes in gene expression that occur without a change in DNA sequence and are meiotically or mitotically heritable. Such changes in gene expression are achieved through the methylation of DNA, the post-translational modifications of histone proteins, and RNA-based silencing. Epigenetics has been implicated in complex diseases such as cancer, schizophrenia, bipolar disorder, autism and systemic lupus erythematosus. The prevalence and severity of these diseases may be influenced by factors that affect the epigenotype, such as ageing, folate status, in vitro fertilization and our ancestors’ lifestyles. Although our understanding of the role played by epigenetics in complex diseases remains in its infancy, it has already led to the development of novel diagnostic methods and treatments, which augurs well for its future health benefits. Received 6 December 2006; received after revision 29 January 2007; accepted 15 March 2007  相似文献   

8.
Little information is available regarding mechanistic links between epigenetic modifications and autoimmune diseases. It seems plausible to surmise that aberrant gene expression and energy metabolism would disrupt immune tolerance, which could ultimately result in autoimmune responses. Metaboloepigenetics is an emerging paradigm that defines the interrelationships between metabolism and epigenetics. Epigenetic modifications, such as the methylation/demethylation of DNA and histone proteins and histone acetylation/deacetylation can be dynamically produced and eliminated by a group of enzymes that consume several metabolites derived from various physiological pathways. Recent insights into cellular metabolism have demonstrated that environmental stimuli such as dietary exposure and nutritional status act through the variation in concentration of metabolites to affect epigenetic regulation and breakdown biochemical homeostasis. Metabolites, including S-adenosylmethionine, acetyl-CoA, nicotinamide adenine dinucleotide, α-ketoglutarate, and ATP serve as cofactors for chromatin-modifying enzymes, such as methyltransferases, deacetylases and kinases, which are responsible for chromatin remodelling. The concentration of crucial nutrients, such as glucose, glutamine, and oxygen, spatially and temporally modulate epigenetic modifications to regulate gene expression and the reaction to stressful microenvironments in disease pathology. In this review, we focus on the interaction between metabolic intermediates and epigenetic modifications, integrating environmental signals with programmes through modification of the epigenome–metabolome to speculate as to how this may influence autoimmune diseases.  相似文献   

9.
10.
11.
Platelets interact with bacterial pathogens through a wide array of cellular and molecular mechanisms. The consequences of this interaction may significantly influence the balance between infection and immunity. On the one hand, recent data indicate that certain bacteria may be capable of exploiting these interactions to gain a virulence advantage. Indeed, certain bacterial pathogens appear to have evolved specific ways in which to subvert activated platelets. Hence, it is conceivable that some bacterial pathogens exploit platelet responses. On the other hand, platelets are now known to possess unambiguous structures and functions of host defense effector cells. Recent discoveries emphasize critical features enabling such functions, including expression of toll-like receptors that detect hallmark signals of bacterial infection, an array of microbicidal peptides, as well as other host defense molecules and functions. These concepts are consistent with increased risk and severity of bacterial infection as correlates of clinical abnormalities in platelet quantity and quality. In these respects, the molecular and cellular roles of platelets in host defense against bacterial pathogens are explored with attention on advances in platelet immunobiology.  相似文献   

12.
13.
14.
15.
Enteropathogenic Escherichia coli (EPEC) is a major cause of infant diarrhea, killing hundreds of thousands of children per year worldwide. Intimate attachment to the host cell leading to the formation of actin-rich pedestals beneath the adhering bacteria is an essential feature of EPEC pathogenesis. EPEC attaches to host cells via the outer membrane adhesin, intimin. It was recently shown that EPEC inserts its own receptor for intimate adherence, Tir (translocated intimin receptor) into the host cell membrane. The focus of this review is on the discovery and characterization of this novel receptor, and our current understanding of its role in pedestal formation. Gram-negative bacterial secretion systems, including type III secretion systems, are reviewed and discussed in the context of Tir delivery into the host cell membrane. The relationship and relevance of in vitro models compared to the actual in vivo situation is essential to understanding disease. We have critically reviewed the use of animal models in studying EPEC infection. Elucidating the function of Tir will contribute to our understanding of how EPEC mediates disease.  相似文献   

16.
Memory   总被引:2,自引:0,他引:2  
In this review we address the idea that conservation of epigenetic mechanisms for information storage represents a unifying model in biology, with epigenetic mechanisms being utilized for cellular memory at levels from behavioral memory to development to cellular differentiation. Epigenetic mechanisms typically involve alterations in chromatin structure, which in turn regulate gene expression. An emerging idea is that the regulation of chromatin structure through histone acetylation and DNA methylation may mediate long-lasting behavioral change in the context of learning and memory. We find this idea fascinating because similar mechanisms are used for triggering and storing long-term 'memory' at the cellular level, for example when cells differentiate. An additional intriguing aspect of the hypothesis of a role for epigenetic mechanisms in information storage is that lifelong behavioral memory storage may involve lasting changes in the physical, three-dimensional structure of DNA itself.  相似文献   

17.
The aberrant epigenetic landscape of a cancer cell is characterized by global genomic hypomethylation, CpG island promoter hypermethylation of tumor suppressor genes, and changes in histone modification patterns, as well as altered expression profiles of chromatin-modifying enzymes. Recent advances in the field of epigenetics have revealed that microRNAs’ expression is also under epigenetic regulation and that certain microRNAs control elements of the epigenetic machinery. The reversibility of epigenetic marks catalyzed the development of epigenetic-altering drugs. However, a better understanding of the intertwined relationship between genetics, epigenetics and microRNAs is necessary in order to resolve how gene expression aberrations that contribute to tumorigenesis can be therapeutically corrected.  相似文献   

18.
19.
Silencing of DNA repair genes plays a critical role in the development of the cancer because these genes, functioning normally, would prevent the accumulation of mutations leading to carcinogenesis. Epigenetic gene silencing is an alternative mechanism to genetic gene aberration, inactivating those genes in cancer. DNA methylation and histone modification are the major factors for epigenetic regulation of gene expression. Here, we describe recent advances in understanding of epigenetic silencing of DNA repair genes and their epigenetic mechanisms involving DNA methylation and histone modification.  相似文献   

20.
Matrix metalloproteinase 9 (MMP-9) is one of the most studied enzymes in cancer. MMP-9 can cleave proteins of the extracellular matrix and a large number of receptors and growth factors. Accordingly, its expression must be tightly regulated to avoid excessive enzymatic activity, which is associated with disease progression. Although we know that epigenetic mechanisms play a central role in controlling mmp-9 gene expression, predicting how epigenetic drugs could be used to suppress mmp-9 gene expression is not trivial because epigenetic drugs also regulate the expression of key proteins that can tip the balance towards activation or suppression of MMP-9. Here, we review how our understanding of the biology and expression of MMP-9 could be exploited to augment clinical benefits, most notably in terms of the prevention and management of degenerative diseases and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号